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Abstract— We consider the communication from a cooperative
sensor network to a mobile access point. We assume that
sensors are informed with a global message and some nodes
are misinformed with random messages. Nodes transmit to the
mobile access point in a pre-scheduled order. We derive an
achievable rate for the information retrieval process when d

sensors are transmitting at a time. For the Gaussian multiple
access channel under the total network power constraint, we
show that the maximum achievable rate for the Gaussian multiple
access channel isO(log

2
d), obeying the same scaling law as the

capacity of an Gaussian multiple-input-single-output channel.

I. I NTRODUCTION

We consider information retrieval in a cooperative SEnsor
Network with Mobile Access (SENMA) [1]. As illustrated in
Fig. 1, SENMA contains two types of nodes: a large number of
low power geographically distributed sensors, and a computa-
tionally powerful mobile access point. By cooperative SENMA
(C-SENMA) we mean that, in communicating to the mobile
access point, sensors may reach an agreement on the message
to transmit, and appropriate coding can be implemented across
sensors. This makes the information retrieval robust against
failure of individual sensors.

If no sensor is misinformed, and if the mobile access point
polls one sensor at a time and the channel between each sensor
and the mobile access point is a discrete memoryless channel
q(y|x), then the maximum achievable rate for the information
retrieval is given by

C0 = max
p(x)

I(X;Y ).

In such a setting, there is no difference between retrieving
information from a single sensor or multiple sensors since all
sensors have the same message.

For large scale sensor networks, however, reaching complete
agreement among all sensors is very difficult, if not impossible.
For example, a software agent responsible for distributingthe
message may not have reached all sensors, or sensors make
errors due to unreliable conference links. In practice, there
is always a possibility that some sensors do not have the
correct message for transmission. We refer to such sensors
as misinformed. The achievable rate of cooperative sensor
networks with misinformed sensors is no longer obvious.

In this paper, we investigate the achievable rate for multiple
simultaneous transmission (allowingd nodes to transmit at a
time). An achievable rate is given in Theorem 2. We then

q(y|x)

Fig. 1. SEnsor Network with Mobile Access.

consider an additive Gaussian multiple access channel witha
total power constraint and show that the maximum achievable
rate isO(log2 d), obeying the same rule as the case when there
is no misinformed sensors.

For notation compactness, denote an entry with two sub-
indicesi andj by (·)ij . The meaning ofij, a double-index or
a scalar multiplication, can be determined by its context.

II. M ODEL

The communication of the global message from the network
to the mobile access point is divided into four steps as shown
in Fig. 2: (a) orientation, (b) scheduling, (c) transmission
and reception, and (d) decoding. In the first step, nodes are
informed with the globe messageW ∈ {1, . . . ,M} that
is uniformly distributed. Due to the size of the network, a
node may be informed incorrectly and end up with a differ-
ent message. We assume that each node receives the globe
message correctly with some probability, and the receptionis
independent of other nodes. More specifically, the reception
of node i is controlled by a binary random variableUi,
independent ofW and identically independently distributed
(i.i.d.) across node indexi with distribution

p(ui) =

{
β if ui = 0

1 − β if ui = 1

where β ∈ [0, 1] is a constant. WhenUi = 1, the received
message at nodei, W̃i, is equal to the globel messageW .
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(a) Step I: Orientation att = 0.
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(b) Step II: Scheduling att = 1, . . . , n. Herei, j ∈ kDt.
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(c) Step III: Transmission and Reception att =

1, . . . , n.
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(d) Step IV: Decoding att = n.

Fig. 2. Communication steps.

WhenUi = 0, W̃i is uniformly distributed from1 to M . Thus

p(w̃i

∣∣ w, ui) =

{
δ(w̃i, w) if ui = 1
1
M 11≤w̃i≤M if ui = 0

where δ(a, b) is equal to 1 if a = b, 0 otherwise, and
the indicating function1A equal to 1 if event A is true,
0 otherwise. The constantβ controls the reception of the
globe message by individual nodes and is referred to as the
orientation error probability of the network.

The mobile access point comes to retrieve information from
the field after the information orientation has been accom-
plished. LetD , (1, . . . , d) and ZD denote(Z1, . . . , Zd),
where Z1, . . . , Zd are generic symbols. We assume thatd
nodes are scheduled to transmit at each time slot, each
transmitting one symbol to the channel DenoteKDt =
(K1t, . . . ,Kdt) the nodes transmitting at timet. The schedul-
ing signalKDt is preset before the deployment of the sensors,
thus it does not adapt to the mobile access point’s reception.

We assume that the uplink multiple access channels (MACs)
from anyd nodes to the mobile access point are identical and
modeled by a discrete memoryless MAC{X ,Y, q(y

∣∣ xD)},
whereX andY are the input and output alphabets respectively,
and q(y

∣∣ xD) is the transition probability of the channel. We
assume the MAC is symmetrical with respect to input permu-
tations,i.e., q(y

∣∣ xπ1
, . . . , xπd

) is identical for all permutations
πD in the domainD. DenoteXjt the transmission from node
Kjt andYt the output of the MAC at timet. The total number

of slots of transmission isn, the number of time slots the
mobile access point spends to retrieve information from the
field.

In the last step, the access point decodes the globe message
based on the observation ofY n and the schedulingKn

D. The
decoded message is denoted byŴ ∈ {1, . . . ,M}. Let Wjt ,

W̃Kjt
be the message at thejt-th polled node. We assume that

the sensor network is large in the sense that there are infinite
number of nodes, and there is no limit on how many times a
node can transmit. The large network assumption is to make
sure that with zero probability that all nodes have the incorrect
message, thus it is possible to have non-zero achievable rate.

Let N be the set of positive numbers andW ,

{1, 2, . . . ,M}. The rate of a code book is defined asR ,

log(M)/n, whereM is the number of messages in the code
book andn is the length of a codeword. The probability of
error is defined asPe , P(Ŵ 6= W ), where W ∈ W is
uniformly distributed andŴ is the decoded message. A rate
R is called achievable if for any given errorε > 0, there exists
a code book with rate large thanR−ε and probability of error
less thanε.

III. A CHIEVABLE RATE FOR d SIMULTANEOUS

TRANSMISSIONS

As a special case whend = 1, the maximum achievable
rate is given by the following theorem:



Theorem 1: For d = 1, the maximum achievable rate of a
C-SENMA (β,X ,Y, q(y

∣∣ x)) is

C1 = (1 − β)max
p(x)

I(X;Y ),

whereX ∈ X , Y ∈ Y, andp(y
∣∣ x) = q(y

∣∣ x).

For d > 1, an achievable rate is given as follows:

Theorem 2: For a givend, consider random variablesXD

with distributionp(xD). DenotepI(xI) the marginal distribu-
tion of XI for I ⊂ D. The following rate is achievable for
C-SENMA (β,X ,Y, q(y

∣∣ xD)),

Cd = max
p(xD)

∑

I⊂D

(1 − β)|I|βd−|I|I(X
(I)
I ;Y ),

whereX
(I)
D = (X

(I)
1 , . . . ,X

(I)
d ) are derived fromXD with

distribution

p(I)(x
(I)
D ) = pI(x

(I)
I )

∏

j /∈I

pj(x
(I)
j ),

andp(y
∣∣ x

(I)
D ) = q(y

∣∣ x
(I)
D ).

The achievability of Theorem 2 is outlined in the appendix

IV. GAUSSIAN MULTIPLE ACCESSCHANNELS WITH A

TOTAL POWER CONSTRAINT

Consider the following Gaussian multiple access channel

y = v +
∑

i

xi (1)

where xi ∈ C is the input from thei-th sensor,v ∈ C is
the additive white Gaussian noise with zero mean and unit
variance, andy ∈ C is the channel output. We impose a total
power constraintP on the network,i.e., the total transmitted
power from all sensors is less than or equal toP :

1

n

n∑

t=1

d∑

j=1

|xjt|
2 ≤ P

wherexjt is the jt-th transmission. If there is no orientation
error, i.e., β = 0, we know from the multiple-input-single-
output (MISO) channel capacity that, withd sensor polled at
a time, the maximum achievable rate isC

(0)
d = log2(1+ dP ).

Therefore, whenβ = 0, the maximum achievable rateC(0)
d =

O(log2 d) goes to infinity as we increased, the number of
sensors polled at a time. In this section, we show that even
with β > 0, the maximum achievable rate of the channel (1)
is still O(log2 d).

Consider activatingd sensors at a time. Let the input
random variablesX1, . . . ,Xd be identically Gaussian dis-
tributedNC(0, P/d) and let any two input random variables
Xi,Xj have correlation coefficient1. For I ⊂ D, since the
derived random variablesX(I)

D\I , independent of each other, are

independent ofX(I)
I , X

(I)
D\I contribute(d−|I|)P/d power to

the additive noise. Therefore,

I(X
(I)
I ;Y ) = log2

(
1 +

|I|2P/d

1 + (d − |I|)P/d

)
.

From Theorem 2, the following rate is achievable,

Rd =

d∑

i=0

(1 − β)iβd−i

(
d

i

)
log2

(
1 +

i2P/d

1 + (d − i)P/d

)
.

The next proposition shows thatRd = O(log2 d). SinceRd ≤

Cd ≤ C
(0)
d = O(log2 d), we haveCd = O(log2 d).

Proposition 3: For β ∈ [0, 1) andP > 0,

lim
d→∞

(Rd − log2 d) = log2

( (1 − β)2P

1 + βP

)
.

Proof: Let S1, S2, . . . , be i.i.d. Bernoulli with mean1−
β. ThenTd =

∑d
i=1 Si is binomial distributed. Let

f(a, b) , log2

(
a +

b2P

1 + (1 − b)P

)
.

We have

Rd − log2 d =

d∑

i=0

(1 − β)iβd−i

(
d

i

)
f(1/d, i/d)

= E[f(1/d, Td/d)].

Sincef(a, b) is continues at(0, 1− β), for all ε > 0, there
exists aδ > 0 such that for alla ∈ [0, δ) , A and b ∈
(1− β − δ, 1− β + δ) , B, |f(a, b)− f(0, 1− β)| ≤ ε/3. For
the sameε andδ,

|E[f(1/d, Yd/d)] − f(0, 1 − β)|

≤ E[|f(1/d, Yd/d) − f(0, 1 − β)|]

≤ EYd/d∈B[|f(1/d, Yd/d) − f(0, 1 − β)|]

+ EYd/d/∈B[|f(1/d, Yd/d)|]

+ Pr(Yd/d /∈ B)f(0, 1 − β). (2)

For larged, 1/d ∈ A. Therefore, due to the continuity off ,
the first term in (2) is upper bounded byε/3. The third term,
by the weak law of large number, is upper bounded byε/3
for larged. We bound the second term as follows. Ford ≥ 1
and i = 0, . . . , d, we have

f(1/d, i/d) ≤ log2(1/d + P ),

f(1/d, i/d) ≥ log2(1/d).

For larged such that1/d + P ≤ d, we have

|f(1/d, i/d)| ≤ log2 d.

Hence, by Chebyshev inequality,

EYd/d/∈B[|f(1/d, Yd/d)|] ≤ Pr(Yd/d /∈ B) log2 d

≤
σ2

s

δ2d
log2 d

≤ ε/3 for larged.

Therefore,|E[f(1/d, Yd/d)] − f(0, 1 − β)| ≤ ε for large d.
Sinceε > 0 is arbitrary,limd→∞ E[f(1/d, Yd/d)] = f(0, 1−
β), proving the proposition.

Fig. 3 shows the achievable rateRd and the approximation
function log2 d + f(0, 1− β) versusd whenP = 10 andβ =
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Fig. 3. Achievable rateRd versusd: P = 10 andβ = 0.1, 0.3, 0.5.

0.1, 0.3, 0.5. As shown in Fig. 3,Rd and the approximation
function converge asd increases. As expected, the achievable
rate is higher for a network with a smaller orientation error
probability.

V. SUMMARY

We have presented an achievable rate for cooperative sen-
sor networks with misinformed sensors whend sensors are
activated at a time. We have considered an additive Gaussian
multiple access channel with a network power constraint and
shown that the maximum achievable rate isO(log2 d).

APPENDIX

SKETCH OF THEACHIEVABILITY

We first derive an achievable rate based on a repetitive
scheduling, and then optimize the achievable rate to proof the
achievability of Theorem 2.

We group everyN time slots into a time frame and schedule
in a time framed nodes that have never be scheduled before.
This scheme is calledN -scheduling.

Lemma 4: For a givend, consider random variablesSD ∈
X d with distribution p(sD). Denote pI(sI) the marginal
distribution ofSI for I ⊂ D. Let Ī , D \ I. For a given C-
SENMA (β,X ,Y, q(y

∣∣ xD)), with the 1-scheduling, the rate

Rd1 , I(SD;Y )

is achievable, where

p(y
∣∣ sD) =

∑

I⊂D

(1 − β)|I|β|Ī|
∑

s′
Ī
∈X |Ī|

q(y
∣∣ sI , s′Ī)

∏

j∈Ī

pj(s
′
j).

Proof: Code book Generation: Generate a code book
with M = 2nR messages at random according to the dis-
tribution p(sD). Specifically, for1 ≤ t ≤ n, let sDt(w) =
(s1t(w), . . . , sdt(w)) be a mapping fromW to X d. For 1 ≤
t ≤ n, 1 ≤ w ≤ M , assignsDt(w) a value independently
generated according to the distributionp(sD). After the ran-
dom assignment ofsDt(w), let every node have the same code

book. At time t, the nodekit, 1 ≤ i ≤ d, transmits symbol
sit(w̃kit

) to the channel.
Decoder: Typical set decoding is employed. Define the

typical setA(n)
ε with respect to the distributionp(sD, y)

A(n)
ε , {(sn

D, yn) ∈ X dn × Yn :
∣∣∣− 1

n
log p(sn

D) − H(SD)
∣∣∣ ≤ ε,

∣∣∣− 1

n
log p(yn) − H(Y )

∣∣∣ ≤ ε,
∣∣∣− 1

n
log p(sn

D, yn) − H(SD, Y )
∣∣∣ ≤ ε},

wherep(sn
D, yn) =

∏n
i=1 p(sDi, yi). Upon receiving channel

outputsyn, the mobile access point declares the messageŵ
as the received message if there is one and only oneŵ ∈ W
such that(sn

D(ŵ), yn) ∈ A
(n)
ε ; otherwise, the decoder declares

an error.
The error analysis is omitted here due to the space limit. It

can be shown that, ifR < I(SD;Y ), the average probability
of error, average over all codewords and all code books,
converges to zero asn goes to infinity.

Corollary 5: For a givend, a distribution p(sD) on the
alphabetX d, and a C-SENMA(β,X ,Y, q(y

∣∣ xD)), with the
N -scheduling, the rate

RdN ,
1

N
I(SN

D ;Y N )

is achievable, whereSN
D ∈ X dN , Y N ∈ YN , and

p(sN
D , yN ) =

( N∏

i=1

p(sDi)
)(∑

I⊂D

(1 − β)|I|β|Ī|

·
N∏

i=1

∑

s′
Ī
∈X |Ī|

q(yi

∣∣ sIi, s
′
Ī)

∏

j∈Ī

pj(s
′
j)

)
. (3)

Proof: Consider theN -th extension of the MAC,
(XN ,YN , q(yN

∣∣ xN
D )), where

q(yN
∣∣ xN

D ) =
N∏

i=1

q(yi

∣∣ xDi).

Let p(sN
D ) =

∏N
i=1 p(sDi) be the input distribution to theN -th

extended C-SENMA(β,XN ,YN , q(yN
∣∣ xN

D )). By Lemma 4,
I(SN

D ;Y N ) is achievable for theN -th extended system with
1-scheduling, where

p(sN
D , yN ) =

( N∏

i=1

p(sDi)
)(∑

I⊂D

(1 − β)|I|β|Ī|

·
∑

s′N
Ī

∈XN|Ī|

N∏

i=1

q(yi

∣∣ sIi, s
′
Īi)

∏

j∈Ī

pj(s
′
ji)

)

=
( N∏

i=1

p(sDi)
)(∑

I⊂D

(1 − β)|I|β|Ī|

·
N∏

i=1

∑

s′
Ī
∈X |Ī|

q(yi

∣∣ sIi, s
′
Ī)

∏

j∈Ī

pj(s
′
j)

)
.



The operation of the original C-SENMA with theN -
scheduling is equivalent to that of theN -th extended C-
SENMA with the1-scheduling. Thus1N I(SN

D ;Y N ) is achiev-
able for the original system withN -scheduling.

We are now ready to prove the achievability of Theorem 2
by showing the convergence ofRdN as N goes to infinity.
Let SN

D has distribution
∏N

i=1 p(sDi). IntroduceVD ∈ {0, 1}d,
i.i.d. Bernoulli random variables with mean1− β. Let VD be
independent ofSN

D . It can be shown that if we let

p(yN
∣∣ sN

D , vD) =

N∏

i=1

∑

s′
Ī
∈X |Ī|

q(yi

∣∣ sIi, s
′
Ī)

∏

j∈Ī

pj(s
′
j) (4)

where I = {i : vi = 1}, then the resulting marginal
distributionp(sN

D , yN ) is given by (3). Therefore,

1

N
I(SN

D ;Y N ) =
1

N
I(SN

D ;Y N , VD) −
1

N
I(SN

D ;VD

∣∣ Y N )

≥
1

N
I(SN

D ;Y N
∣∣ VD) −

d

N
(5)

→
1

N
I(SN

D ;Y N
∣∣ VD) asN → ∞

where (5) is becauseH(VD) ≤ d. For all vD ∈ {0, 1}d, let
I = {i : vi = 1}. Let X

(I)
D , derived fromp(sD), andY be

defined as in Theorem 2. It can be shown from (4) that

1

N
I(SN

D ;Y N
∣∣ vD) = I(X

(I)
I ;Y ).

Hence,

lim
N→∞

RdN = lim
N→∞

1

N
I(SN

D ;Y N )

≥
∑

I⊂D

(1 − β)|I|βd−|I|I(X
(I)
I ;Y ).

Optimizing overp(sD) concludes the proof of the achievability
of Theorem 2.
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