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Cooperative Sensor Networks With
Misinformed Nodes
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Abstract—The communication capacity of Cooperative SEnsor
Networks with Mobile Access (C-SENMA) is considered when
some sensors may be misinformed with erroneous messages. It
is assumed that a global message is first distributed to all the
nodes, each node receiving the message correctly with probability
1 . The nodes cooperate in delivering the global message to
the mobile access point. Three system configurations are discussed
based on whether a polling channel and/or an energy constraint
are present. The first type is C-SENMA with Polling with No
Energy constraints (PNE), where the mobile access point has the
ability to poll individual sensors. Without energy constraints, each
sensor can transmit for an unlimited number of times. The second
type is C-SENMA with No Polling with No Energy constraints
(NPNE), where adaptive polling is not allowed and sensors have to
transmit according to a predetermined schedule. The third type
is C-SENMA with No Polling with an Energy constraint (NPE),
where each node has a limit on the number of transmissions.

The capacities of the three system configurations are analyzed. It
is shown that, the capacity for C-SENMA PNE is the same as that
when there are no misinformed sensors. For C-SENMA NPNE,
with the absence of the polling channel, there is a loss on the achiev-
able rate, proportional to , the probability that a sensor is misin-
formed. Results are extended to multiple simultaneous transmis-
sions with the presence of channel fading. The optimal number
of simultaneous transmissions is investigated under three different
fading situations.

Index Terms—Channel capacity, cooperative transmission and
networking, multiaccess channels, sensor networks.

I. INTRODUCTION

WE consider large-scale sensor networks in which each
sensor is limited in power and constrained in energy.

Sensor networks are application specific, and we are interested
in those cases when the network operates in two different
phases: information gathering and information retrieval. The
former focuses on sensing and local processing of information
by the sensors whereas the latter is concerned with efficient and
reliable information delivery to the outside world.
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Fig. 1. SEnsor Network with Mobile Access (SENMA).

We focus in this paper on the information retrieval aspect of
the sensor network, taking an informationtheoretic approach to
the efficient and reliable extraction of data. To this end, we as-
sume a special architecture referred to as SEnsor Networks with
Mobile Access (SENMA) [1]. As illustrated in Fig. 1, SENMA
consists of two types of nodes: a large number of geographically
distributed sensors with low power, and a mobile access point
in charge of collecting data from sensors. The presence of a mo-
bile access point, presumably less constrained in energy, power,
and computation complexity, considerably simplifies the design.
Similar ideas include the so-called Message Ferry [2] and Data
Mule [3], [4].

In SENMA, sensors can, of course, transmit data directly to
the mobile access point. Such transmissions are not likely to be
reliable due to the lack of transmission power and the low com-
plexity of the sensor nodes. A better approach is to deliver the
information in a cooperative fashion. By cooperative SENMA
(C-SENMA) we mean that when communicating to the mobile
access point, sensors may reach an agreement on a message and
transmit using an appropriate coding scheme. Such a coopera-
tive scheme, as an alternative to collaborative transmission at
the signaling level, makes information retrieval robust against
failures of individual sensors. A coding-across-sensors scheme
to cope with packet losses is presented in [5].

The process of reaching agreement, referred to as orienta-
tion, is nontrivial. Orientation can be carried out in many ways.
For example, nodes may exchange information via conference
links among themselves and establish a global message. Alter-
natively, the global message may be propagated by a software
agent that travels across the sensor network. When sensor net-
works are viewed as a form of storage devices in which one
mobile access point deposits information meant to be retrieved
by other mobile access points at a different time, the process of
orientation is simply the broadcast of messages from a mobile
access point.
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We consider a discrete-time system. When only one sensor
transmits at a time, the channel between each sensor and the mo-
bile access point can be modeled as an identical discrete mem-
oryless channel (DMC) with conditional probability . If
the orientation is perfect, i.e., there is no disagreement among
sensors, then the maximum achievable rate of the information
retrieval is given by

In such a setting, there is no difference between retrieving infor-
mation from a single sensor or multiple sensors since all sensors
have the same message.

For a large-scale sensor network, however, perfect orientation
may not be possible. For example, the software agent respon-
sible for distributing the message may not have reached all sen-
sors, or sensors make errors because of unreliable conference
links. In practice, there is always a possibility that some sensors
do not have the correct message for transmission. We refer to
such sensors as misinformed sensors, and this paper focuses on
the maximum achievable rate of information retrieval with the
presence of misinformed sensors.

A. Summary of Results

We study three types of C-SENMA configurations in this
paper. The first type is C-SENMA with Polling with No Energy
constraints (PNE). In this case, the mobile access point has the
ability to poll individual sensors, making it possible to locate
sensors with the correct message. Without energy constraints,
each sensor can transmit for an unlimited number of times, and
information can be retrieved reliably from those well-informed
sensors. The second type is C-SENMA with No Polling with
No Energy constraints (NPNE). In this case, polling is not al-
lowed, and sensors must transmit according to a predetermined
schedule. The problem here is more challenging because the
mobile access point can no longer make choices based on the
signal it receives from the sensors. The third type is C-SENMA
with No Polling with an Energy constraint (NPE), a case that
models the more practical situation that battery operated sensors
cannot transmit indefinitely. In such a case, it is impossible to
schedule a single sensor to transmit for all time. The last possible
type, not considered in this paper, is C-SENMA with Polling
with an Energy constraint.

The capacities of there three C-SENMA systems are the main
focus of this paper. We assume that each sensor has a probability

to be misinformed.1 The challenge for a system with a polling
channel is to design strategies to adapt the polling sequence ac-
cording to the previous receptions. For a system without polling
channels, the activation sequence is predetermined and is an op-
timization parameter for the maximum achievable rate.

If only one sensor transmits at a time, and the channel be-
tween each sensor and the mobile access point is an identical
DMC , we show that the capacity of C-SENMA PNE is

1When a sensor is misinformed, it chooses its local message randomly from
the possible message set with equal probability.

provided that the sensor is not always misinformed, i.e., .
When polling is not allowed, the capacity of C-SENMA NPNE
is shown to be

We also present the capacity of C-SENMA NPE, which has
a more complicated expression than the previous two system
configurations.

Allowing one sensor to transmit at a time simplifies the design
and the operation of the system, but it may not be optimal, de-
pending on the channel between sensors and the mobile access
point. We thus investigate multiple simultaneous transmissions
and consider channels with fading. We focus on C-SENMA
NPNE and consider a Gaussian channel with a network-wise
total power constraint.2 We prove an achievable rate and show
that if there is no fading, the achievable rate increases to infinity
as the number of simultaneous transmissions increases. If there
is only phase fading, however, the achievable rate is maximized
when there is only one sensor transmitting at any time slot. For
Rayleigh fading, the optimal number of simultaneous transmis-
sions varies with the misinformed probability .

B. Related Work

For wireless networks with many power/energy-constrained
nodes, the idea of cooperation among nodes for the purpose of
more reliable and efficient communication has attracted much
attention. Cooperation among nodes can be found in many
forms according to the traffic pattern, including, broadcasting
where information is delivered from a source to all the other
nodes in the network with nodes relaying the information
[7]–[9], relaying where information is delivered from a source
to a single destination with the help of relay nodes [10], [11],
and multiple sources type where each node in the network
has its own information to send, and nodes assist each other
[12]–[16]. The traffic pattern in this paper is different from
the aforementioned three patterns. We assume that nodes in
the network have established a common message and they
cooperate to deliver the message to the mobile access point.
This traffic pattern can also be found in [5], [17]. The problem
of establishing the common message was addressed in the
sensor broadcast problem [18]. When all the nodes are assumed
to know the exact common message, there is no difference
between multiple cooperating nodes and multiple transmitting
antennas (in multiple-input single-output or multiple-input
multiple-output channels). In this paper, however, we take into
account errors in distributing the common message in the co-
operation process under a specific sensor network architecture.

The communication model used in this paper is conceptually
related to relay networks, where the source node distributes its
information via a broadcast medium, and the relay nodes in the
network receive the transmission and forward the information
to the destination node through some coding strategies [10],
[11], [19]. Our model differs from [10], [11], [19] in that we
model the message distribution process via a packet error rate

2Instead of the maximum achievable rate of C-SENMA PNE, results pre-
sented in [6] are in fact achievable rates for C-SENMA NPNE with no fading.
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Fig. 2. Communication steps. (a) Step I: orientation. (b) Step II: polling. (c) Step III: transmission and reception. (d) Step IV: decoding.

model, in which an intermediate node received the global mes-
sage correctly with a fixed probability, while [10], [11], [19] via
a Gaussian channel model.

The paper is organized as follows. Section II describes the
communication procedure and introduces the channel model.
The capacities of the three system configurations are studied in
Sections III–V, respectively. We extend the model to multiple si-
multaneous transmissions in Section VI and investigate the op-
timal number of simultaneous transmissions for a Gaussian mul-
tiple-access channel (MAC) with a network power constraint in
Section VII. The paper is concluded in Section VIII.

II. MODEL

We first describe the model for systems with a polling
channel. The communication of the global message from the
network to the mobile access point is divided into four steps
as shown in Fig. 2: Fig. 2 (a) presents orientation, Fig. 2 (b)
polling, Fig. 2 (c) transmission and reception, and Fig. 2 (d)
decoding. In the first step, nodes are informed with a global
message that is uniformly distributed. We
assume that each node receives the global message indepen-
dently and with probability being correct. Specifically, the
reception of node is controlled by a binary random variable ,
independent of and independent and identically distributed
(i.i.d.) across node index with distribution

if
if

(1)

where is a constant. When , the received
message at node , denoted by , is equal to the global message

. When is uniformly distributed from to .
Thus,

if
if

where is equal to if , or otherwise. The con-
stant affects the reception of the global message by individual
nodes and is referred to as the orientation error probability of
the network.

We consider a time-slotted system. The mobile access point
comes to retrieve information from the field after the informa-
tion orientation is complete. The information retrieval process
consists of Step II: polling and Step III: transmission and re-
ception. To avoid collision, a polling-based multiple access is
employed: The mobile access point polls one node to transmit
one symbol at each time slot. At time , the receiver polls node

to transmit the th symbol of the codeword corresponding to
the th message. Since the mobile access point is not power
limited, we assume that the polling channel is error free. The
uplink channels from each node to the receiver are assumed to
be identical and modeled by a DMC , where

and are the input and output alphabets, respectively, and
is the transition probability of the channel. Node ,

after receiving the polling signal, transmits the selected symbol
to the uplink channel. Denote and the input and output
of the DMC at time , respectively. After receiving , the mo-
bile access point moves to the next time slot and starts
the polling step again. It may poll a node that has or has not
been polled before. Steps II and III alternate until reaches ,
the number of slots the receiver spends to retrieve information
from the field.

At the last step, the receiver decodes the global message based
on the channel outputs and the polling history . The de-
coded message is denoted by . A decoding
error occurs if . We assume that the sensor network is
large in the sense that there are infinite number of nodes. With
this assumption, the probability of all nodes being misinformed
is zero. Thus, it is possible to have a positive achievable rate.

In the above scheme, the mobile access point has a polling
channel to address individual sensors. The polling channel could
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Fig. 3. Transmission example. The global message is W = 1. Node 2 is
misinformed where the local message is W = 2. At time t = 3, the activated
node is K = 2. Hence, the symbol in row 2 column 3 of the codebook is
transmitted at time t = 3, resulting in a transmission from a misinformed node.

be costly to implement. Therefore, it is also desirable to consider
schemes with predetermined scheduling, i.e., the scheduling se-
quence is preset in sensors before deployment. We refer to
as the polling sequence if a polling channel is implemented, or
the prescheduling sequence if no polling channels are imple-
mented. In systems without polling, the prescheduling sequence

does not depend on the channel outputs.
For systems without energy constraints (PNE and NPNE), we

assume that there is no limit on how many times a sensor can
transmit. In reality, battery-powered sensors are energy limited,
which may impose constraints on the lifetime of sensors. For
systems with an energy constraint (NPE), we assume that each
sensor has up to transmissions.

Fig. 3 illustrates a transmission example of C-SENMA,
where represents the shared codebook, and the actual trans-
mitted symbols are labeled by solid dots in the codebook. In
Fig. 3, the global message is . Node 2 is misinformed
where the local message is . At time , the
activated node is . Hence, the symbol in row 2 column
3 of the codebook is transmitted at time , resulting in a
transmission from a misinformed node.

The rate of a codebook is defined as , where
is the number of messages in the codebook and is the

length of a codeword. The probability of error is defined as
, where is uniformly

distributed and is the decoded message. A rate is called
achievable if for any given error , there exists a codebook
with rate larger than and probability of error less than .
The capacity of a system configuration is defined as the max-
imum of all achievable rates for the system configuration.

In the next section, we study the capacity of C-SENMA PNE
in which a polling channel is implemented and each sensor does
not have a limit on how many times it can transmit.

III. CAPACITY OF C-SENMA PNE

When a polling channel is implemented, it is possible for the
mobile access point to first locate a sensor that, with a high
probability, has the correct global message, and then retrieve

the global message from that sensor. If the number of time slots
needed in locating such a sensor is only a function of the given
probability of error, but not a function of the codeword length,
then the overhead associated with the first phase can be made ar-
bitrarily small by increasing the codeword length of the second
phase. Therefore, the capacity of C-SENMA PNE is just the ca-
pacity of the DMC

This strategy is elaborated in the proof of the following theorem,
which, along with a sketch of the proof, was suggested by an
anonymous reviewer for the 2004 IEEE International Sympo-
sium on Information Theory.

Theorem 1: The capacity of C-SENMA PNE is

if
if

Theorem 1 indicates that, for C-SENMA PNE, we achieve
the capacity of the DMC as long as . There is no rate loss
in the C-SENMA PNE case.

Proof: From the DMC capacity definition, for all
, there exists an such that for all , there

exists a code , where denotes a code over
the DMC with messages, codeword length , and
probability of error less than . Let be the total
number of messages. Let . Select large enough such
that there exists a code over the DMC. Divide the
messages evenly into groups,3 indexed from to . Let

(2)

The mobile access point consecutively polls sensors, each
transmitting the group index of its message using the
code. The total number of channel uses for this phase is ,
which is only a function of . Let denote the group index of
the local message at the th polled node and denote the th de-
coded group index. The mobile access point checks if there ex-
ists an , such that . If there is no such ,
the mobile access point declares an error; otherwise, the mobile
access point selects one node from one of the matching pairs.
Denote by the index of the selected node. The access point
polls node to transmit its message using the
code. The decoded message is declared as the global message.
The total channel uses are and the overall com-
munication rate is given by

which converges to as increases.

3Some groups may have one more message than others. For j fixed, as n in-
creases, the ratio of the number of messages in each group over the total number
of messages converges to 1=j.
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To analyze the probability of error, define the following error
events.

• : For all .
• : There exists an such that and the se-

lected node does not have the correct global message,
i.e., .

• : There exists an such that and ,
but the mobile access point does not decode the message
correctly, i.e., .

Let be the event that the first pair of decoded group indices
match, the event that the first pair of nodes
have the correct global message, ,
and the event that the first pair of transmitted group indices
are decoded correctly, . We have

Since the matching outcome of any pair of decoded group in-
dices is i.i.d., the first kind of error is upper-bounded by

where the last inequality is because of (2).
Let be the event that the first node does not have the correct

global message, . The second kind of error is
upper-bounded by

(3)

(4)

(5)

where (3) holds because and are disjoint events, (4) be-
cause for any pair whose decoded group indices match, the prob-
ability that either node in the pair receives an incorrect message
is the same. Let be the event that the group indices of the first
pair match (before transmission), . We have

Since , (5) is further
bounded as

Since , the probability of error is upper bounded
by

For , the probability of error converges to zero as
goes to zero and the communication rate converges to

as goes to infinity, where can be arbitrarily close to .
Therefore, is achievable for .

Since the achievable rate of the system cannot exceed ,
we have proven the theorem.

IV. CAPACITY OF C-SENMA NPE

With a polling channel, C-SENMA PNE achieves the DMC
capacity. For a system without polling channels, the achiev-
able rate is expected to be lower than that for a system with
a polling channel. Next, we study the capacity of C-SENMA
NPE in which the prescheduling sequence does not depend on
channel outputs and each sensor has up to transmissions.

Theorem 2: Let

(6)

where , and

(7)

The capacity of C-SENMA NPE is

where is the maximum number of transmissions allowed from
one sensor.

For the optimal achievable rate, the prescheduling sequence
is also a design issue besides the codebook. In Theorem 2,
is the maximum achievable rate when we fix the prescheduling
to the predetermined sequence in which every time slots are
allocated to a different node. Theorem 2 indicates that we only
need to consider at most prescheduling sequences.

From (6), can be seen as the capacity of a special channel
whose input output joint distribution is given by (7). The
channel as defined by (7) is different from a regular DMC in
that the input distribution affects the transition probability

. Intuitively, can be viewed as the combina-
tion of the orientation process and the DMC: With probability

, the original input is transmitted and goes
through the DMC; with probability is transmitted
and goes through the DMC, for and . The
reason that ( and ) is transmitted with
probability is that, when a node is misinformed, it
randomly chooses a codeword in the codebook. For a given
codebook that is randomly generated with input distribution

, the probability that is selected is roughly .
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To show the achievability of , however, it is not sufficient
to use the above equivalent channel argument since we need to
show that there is a sequence of codebooks such that the prob-
ability of error goes to zero. For any given codebook, when a
node is misinformed, the probability that a particular sequence
of symbols is transmitted from this node depends on the statis-
tics of the given codebook, not the input probability that gener-
ates the codebook. Additional care should be taken when using
the random coding argument.

A. Direct Part of Theorem 2

We first prove the achievability of , from which we de-
rive the achievability of . To achieve , a new sensor4 is
prescheduled to transmit in every time slot.

1) Codebook Generation: Generate a codebook with
messages and codeword length at random according to

the distribution . Let all sensors have the same codebook.
2) Decoder: The typical-set decoding is employed. Define

the typical set with respect to the distribution de-
fined in (7) for

where .5 Upon receiving channel
outputs , the receiver declares the message as the re-
ceived message if there is one and only one such that

; otherwise, the receiver declares an error.
3) Error Analysis: Let denote the th symbol of the

th message in the codebook with messages. Let
be the th channel output given that the codebook has mes-
sages and the th message is the intended global message. In the
definitions of and , we explicitly include to
indicate that and may have different distribu-
tions for .

Without loss of generality, we assume that the first message
is the global message. Let , denote
the distribution of , where the superscript

on indicates that the codebook has messages.
Notice that a node receives the global message correctly with
probability and any one of the other messages
with probability . It can be shown that

and, for

4By new sensors we mean sensors that have not transmitted before.
5The distribution p(s ; y ) is derived from p(s; y), which is given by (7) for

k = 1. It should not be confused with p(s ; y ) in (7).

where

for

Define the following events for :

To evaluate the probability of the occurrence of each event, we
need the following lemma.

Lemma 1 (Joint AEP, Extension of [20, Theorem 8.6.1]): Con-
sider random variables and for and ,
and let denote the sequence . Suppose
that has distribution

where converges to as goes to infinity. Let
be the jointly typical set with respect to the distribution
. Then

(8)

If is drawn according to

and converges to as goes to infinity, then
for large

Proof: See Appendix I.

If we let and for
all , Lemma 1 reduces to [20, Theorem 8.6.1].

Since converges to and , for
, converges to as goes to infinity, by the joint

asymptotic equipartition property (AEP), we have, for suffi-
ciently large

for

The average probability of error, averaged over all codewords
and all codebooks, is given by

If can be made arbitrarily small by letting
go to infinity and go to zero. Recall that a rate is achievable
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if there exists a codebook with a rate arbitrarily close to and
error probability arbitrarily small. Hence, is achievable.
Optimized over is achievable.

To prove the achievability of , consider the th extended
C-SENMA where the DMC is the th extension of the original
DMC

Schedule a new sensor to transmit in every time slot and let
be the input distribution in the th extended system. From

the proof of the achievability of is achievable by
the th extended system. Now consider scheduling a new sensor
to transmit in every time slots in the original system. The
operation of the original C-SENMA with a new sensor in every

slots is equivalent to that of the th extended C-SENMA with
a new sensor in every slot, except that, in the original system, it
takes times longer to transmit one codeword. Therefore,

is achievable by the original system.

B. Converse of Theorem 2

For a given , suppose there is a total number of nodes
involved in the transmission of the codeword. Let be the set of
time slots allocated to node . We have
By the energy constraint, for all . Let

denote a codeword which is uniformly distributed among
all codewords in the codebook, and let denote the channel
outputs. By Fano’s inequality, for all achievable rate

Let denote the set consisting of all the elements that belong
to set but not set . Since goes to zero as goes to
infinity, for large, the achievable rate is upper-bounded by
the as follows:

(9)

(10)

(11)

where (9) holds because is independent of and
conditioning on , and (11) holds because

C. Properties of

We discuss some properties of in this subsection. For the
special case when , the communication channel model of
C-SENMA NPE reduces to a DMC model. When is
the capacity of the th extension of the DMC. Hence, from the
properties of a DMC’s capacity [20], we have that, when

• for ;
• the optimal input distribution for is the

th extension of some ;
• the mutual information is a concave function

of the input distribution .
The first and the second properties indicate that, to calculate the
capacity of the DMC, there is no need to consider extensions of
the DMC. Optimizing over is enough. The third
property says that any kind of hill-climbing technique can be
used to find the optimal input distribution since the input distri-
bution region is convex. From the third property it is also easy
to show that the optimal input distribution for a symmetrical
channel is symmetrical. However, for , these nice proper-
ties do not hold. Counterexamples and other properties are pro-
vided as follows.

For , where , we have . To see this,
let the input distribution be the th product extension of

. Because of the independence of the input distribution, we
have

Therefore, for . Thus, when calculating ,
if and , there is no need to calculate . Our
conjecture is that for .

In general, the input distribution that maximize
is not the th extension of some . Fig. 4 shows

an example that the optimal is not a product extension of
some .

In the definition of , the optimization is over . It is
desirable that the mutual information is concave with
respect to the input distribution , which is true for DMCs
(when ). However, is not a concave function
of in general. Fig. 5 shows an example.

For , we have the following result concerning the con-
cavity of the mutual information.

Proposition 1: If for all , there exists an such
that for all and , then
is a concave function of the input distribution .

Proof: See Appendix II.

V. CAPACITY OF C-SENMA NPNE

In this section, we investigate the capacity of C-SENMA
NPNE in which no polling channels are implemented and no



YANG AND TONG: COOPERATIVE SENSOR NETWORKS WITH MISINFORMED NODES 4125

Fig. 4. I(S ;Y ) versus p . In this figure, � = 0:2 and q =
[0; 1=2; 1; 1=2], where q(i; j) means q(i j j). The solid line represents
I(S ;Y ) for p(s ) being the second product extension of the distribution
[p ; 1 � p ], where the maximum is achieved with the input distribution
[0:392076; 0:234084;0:234084;0:139756]. The dashed line is the maximum
of I(S ;Y ) over all possible p(s ), where the optimal input distribution
is [0:396776;0:229409;0:229409;0:144406]. This figure shows that the
optimal input distribution for I(S ;Y ) may not be a product extension of
some distribution.

Fig. 5. I(S;Y ) versus �. In this figure, � = 2=3 and
q = [1; 4; 5; 2; 4; 5; 2; 1; 5; 2; 1; 4; 2; 1; 4; 5]=12, where q(i; j)
means q(i j j). The input distribution is alone a line p = (1� �)p + �p ,
where p = [0:18; 0; 0:17; 0:65] and p = [0; 0:16; 0:01; 0:83]. The
dashed line is I(S;Y ) plus some affine function of �, which shows that
I(S;Y ) is not a concave function of p(s).

limits are imposed on how many times a sensor can transmit.
Although for C-SENMA NPE, the optimal input distribution
is not necessary the th extension of some , the th
extension of the DMC capacity achieving distribution
is asymptotically optimal, which is shown in the proof of the
direct part of the following theorem.

Theorem 3: The capacity of C-SENMA NPNE is

Next we give an intuitive argument for the proof, and then we
prove Theorem 3 rigorously. We show the converse first. Since
the transmission scheduling is predetermined in C-SENMA
NPNE, portion of the transmission is from misinformed
sensors, hence wasted. Therefore, the best rate possible is

. For the direct part, as we increase the number of
transmissions from one node, the difference between the rate
achievable by C-SENMA NPNE and the rate achievable by
a receiver supplied with extra information whether a node is
misinformed is vanishing. Since the receiver supplied with the
extra information achieves rate , so does C-SENMA
NPNE.

A. Direct Part of Theorem 3

Let be the capacity-achieving input distribution for the
DMC . For a given , schedule a new sensor to transmit
in every slots. Therefore, is
achievable by the direct part of Theorem 2. Let the input dis-
tribution be . The resulting rate

is less than or equal to and therefore achievable. We will
next show that and thus completing the
direct part.

The calculation of involves the joint distribution of
given by (7) where . To evaluate the

lower bound , introduce a Bernoulli random variable
with mean . Let be independent of . It

can be verified that if we let

if
if

then the resulting marginal distribution is compatible
with (7). Therefore,

(12)

(13)

(14)

(15)

where (12) holds because is a binary random variable, (13)
because and are independent given , (14) be-
cause are independent and are indepen-
dent given , and (15) because

and has the capacity-achieving distribution for the
DMC . Hence,
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B. Converse of Theorem 3

Recall that is the random variable that controls the th
node’s reception of the global message during the orientation
phase as in (1). Using Fano’s inequality as in the proof of the
converse of Theorem 2, we bound the achievable rate from
(10)

(16)

(17)

(18)

where (16) holds because is independent of , (17) because
given is independent of , and (18) because

and .

VI. EXTENSION TO MULTIPLE SIMULTANEOUS TRANSMISSIONS

We have considered C-SENMA that only allows one sensor to
transmit at a time to avoid collision. Depending on the MAC be-
tween the mobile access point and multiple sensors, one sensor
transmitting at a time may not be the optimal scheme. In the fol-
lowing two sections, we consider multiple simultaneous trans-
missions and investigate the optimal number of simultaneous
transmissions. We first extend the channel model to MAC with
fading. We then focus on C-SENMA NPNE and consider a
Gaussian MAC with fading and a network power constraint.
The optimal number of simultaneous transmissions is studied
for Gaussian codebooks in three fading scenarios.

A. Model Extension

The communication for C-SENMA with multiple simulta-
neous transmissions consists of the same steps as those intro-
duced in Section II, except that in the third step, there are sen-
sors transmitting simultaneously at one time slot, either polled
(for C-SENMA PNE) or prescheduled (for C-SENMA NPNE
and C-SENMA NPE). Denote the th node among the
nodes activated at time . The transmission from
node at time depends on , the node index among the
activated group, as well as the message at this node and the
time it is activated. Let and denote vector

where are generic symbols. Denote
the activating vector . The uplink MAC

with fading is modeled as follows. Denote the channel
state associate with node at time . Assume that the channel
states associated with nodes at time , has
distribution , i.i.d. across . The fading process is

independent of the transmission from the sensors and the ac-
cess point. For convenience, denote the channel
states associated with nodes activated at time . We assume
that the realization of , unknown to the sensors, is known to
the mobile access point at the end of time slot . The memory-
less channel output, conditioning on the simultaneous transmis-
sions from nodes and the associated channel states, is gov-
erned by the transition probability , where
is the channel output to the mobile access point, the
channel state associated with the th node among the trans-
mitting nodes, , and the transmission from
the th among the nodes.

Let be a permutation in the do-
main . From the above assumption, the channel states asso-
ciated with vector has the identical distribu-
tion . Therefore, a necessary condition for is that

is symmetrical with respect to input permutations, i.e.,
is identical for all permutations . Similarly,

needs to be symmetrical with respect to node per-
mutation, i.e., is identical for
all permutations .

B. Achievable Rate

The results for C-SENMA PNE is extended in the following
theorem.

Theorem 4: Let

(19)

where . The capacity
of C-SENMA PNE with simultaneous transmissions is

if
if

The proof is a straightforward extension of the proof of The-
orem 1. In the first phase, we locate nodes that, with high
probability, have the correct global message. We use the same
method (message group index transmission and comparison) to
locate one node as in the proof of Theorem 1, and repeat it
times to locate nodes. The only technical difference is that in
the multiple simultaneous transmissions case we have a MAC.
To locate one node, we select nodes as the transmission set
but fix nodes’s transmission to a given symbol in the
channel input alphabet. This way, we convert the MAC to a
DMC where the only node whose transmission is not fixed is
the input node to the DMC. In the second phase, we retrieve the
global message from these nodes. Since these nodes have the
same message, we can achieve the multiple-input single-output
(MISO) channel capacity (19) in the second phase. The number
of time slots used in the first phase is only a function of the target
error probability, but not a function of the codeword length in
the second phase. Hence, by increasing the codeword length in
the second phase, we can make the overhead associated with
the first phase arbitrarily small. Thus, the MISO channel ca-
pacity (19) is achievable by C-SENMA PNE with simulta-
neous transmissions.

The next theorem gives an achievable rate for C-SENMA
NPNE with multiple simultaneous transmissions.
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Theorem 5: For a given , consider random variables
with distribution . Denote the marginal distribu-
tion of for . Let be a
random vector derived from with distribution

Let , independent of , have distribution . And let
the conditional distribution of be

The following rate is achievable for C-SENMA NPNE with
simultaneous transmissions:

(20)

For , (20) is the capacity as shown in Theorem 3. The
strategy to achieve (20) is similar to the proof of the direct part
of Theorem 3. We schedule new sensors to transmit simultane-
ously in every consecutive slots. Let symbols of codewords in
the codebook be -dimensional vectors. The codebook is gen-
erated randomly with messages and codeword length ac-
cording to some distribution where . When a
node is scheduled to transmit at time as the th node in the acti-
vated group, it transmits the th element in the th symbol vector
of the codeword corresponding to its local message. Typical set
decoding is employed. It can be shown that the following rate is
achievable with the aforementioned scheduling and coding:

(21)

where , and

(22)

In (22), , and is the marginal distribution of
the th element in . The next step (omitted) is to show
that converges to as goes to infinity and is
optimized, the proof of which can be carried out as in the proof
of the direct part of Theorem 3.

To explain (20) intuitively, view in (20) as the set of in-
dices of well-informed nodes. The probability that appears is

. We can assume that the access point knows
which nodes are misinformed among the transmitting nodes
since the difference between the achievable rate when the access
point knows the index set of misinformed nodes and the achiev-
able rate when the access point does not is vanishingly small as

goes to infinity. Once the access point knows the index set of
the misinformed nodes, we can view those misinformed nodes

as noise sources and the white noises are with indepen-

dent distribution . The noise sources are
independent because each misinformed node randomly selects
a codeword in the codebook independently. Although transmis-
sions at different time slots by the same misinformed node are
from the same random codeword, the noise generated by the
node is white in time because the codebook is generated with in-
dependent distribution in time. Conditioning on is the
input, the output, and the channel side information. Thus,
(20) is achievable.

Next, we consider a Gaussian MAC with a network-wise
power constraint and investigate the optimal number of simul-
taneous transmissions under three different fading situations.

VII. GAUSSIAN MAC WITH A NETWORK POWER CONSTRAINT

Consider the following Gaussian MAC:

where is the additive white Gaussian noise with zero
mean and unit variance, the input from the th sensor,

the fading channel gain associated with the th sensor,
and the channel output. We impose a total power con-
straint on the network,6 i.e., the total transmit power from all
sensors is less than or equal to

where is the transmission from the th node among the
transmitting nodes at time . We assume that the channel gains

’s have distribution , i.i.d. across sensors and time. For
convenience, denote and the transmission from and the
channel gain associated with the th node among the activated
group, respectively, . Let be the
channel gains associated with the transmitting sensors. The
realization of the channel states is assumed to be known to
the mobile access point. We focus on C-SENMA NPNE, and
an achievable rate is given by (20) with the power constraint
on the input distribution, . We consider
three types of fading channels: nonfading, phase-fading, and
Rayleigh-fading. The optimal number of simultaneous trans-
missions is studied for Gaussian codebooks.

A. Nonfading Case

In the nonfading case, , i.e., the channel gain
for each sensor is . If , the C-SENMA channel reduces
to a Gaussian MISO channel with power constraint . From the
MISO channel capacity, we know that

, which goes to infinity as increases. Next we show
that is still as long as .

Consider activating sensors at a time. Let the input
random vector , where

. For , since the derived random

6If, instead, a power constraint is imposed on individual nodes, the
total transmit power can reach infinity if more and more nodes transmit
simultaneously.
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Fig. 6. Achievable rates versus d for C-SENMA NPNE with the Gaussian MAC: P = 10 and various �’s. (a) Nonfading case. (b) Phase-fading case.
(c) Rayleigh-fading case.

variables , independent of each other, are independent

of contribute power to the additive
noise. Therefore,

From Theorem 5, the following rate is achievable:

The next proposition shows that . Since

we have .

Proposition 2: For and

Proof: See Appendix III.

Proposition 2 implies that for the nonfading case,
grows at the rate of , increasing to infinity as
goes to infinity. Let . Fig. 6(a)
shows the achievable rate and the approximation func-
tion versus when and

. As shown in Fig. 6(a), and the approxima-
tion function converge as increases. As expected, the achiev-
able rate is higher for a network with a smaller orientation error
probability.
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B. Phase-Fading Case

In the phase-fading case, is a uniform distribution on the
unit circle.

Proposition 3: Suppose sensors are activated at a time.
With Gaussian codebooks where ,
the maximum achievable rate, optimized over , is

The maximum is achieved when has only one nonzero diag-
onal entry, which is equal to .

Proof: See Appendix IV.

Proposition 3 suggests that, with Gaussian codebooks, the op-
timal for the phase-fading case is one, i.e., it is better to activate
one sensors at a time. To see how the achievable rate depends
on , consider input distribution for a given

. From Theorem 5, the achievable rate is given by

Fig. 6(b) shows the achievable rate versus when
and . As expected from Proposition 3,
achieves maximum when .

C. Rayleigh-Fading Case

In the Rayleigh-fading case, is the distribution of a com-
plex Gaussian with zero mean and unit variance. Consider ac-
tivating sensors at a time and using a Gaussian codebook

. For , let . We have

if

if
if

(23)

where (23) uses the fact that is chi-square

distributed with degrees of freedom and distribution ,
[21]. From Theorem 5, the following rate is achievable:

Fig. 6(c) shows the achievable rate versus when the
power constraint and the orientation error probability

. As shown in Fig. 6(c),
when increases monotonically and converges to

the limit as increases, which is expected because
of the diversity gain. With is no longer monotoni-
cally increasing. first increases and then decreases as in-
creases. As increases, the optimal decreases, reaching one
when in Fig. 6(c).

The optimal number of sensors to activate at a time is infinity
for the nonfading case, one for the phase-fading case. For the
Rayleigh-fading case, the optimal number decreases as the ori-
entation error probability increases. The phenomenon is related
to the channel diversity gain associated with activating more
than one sensors at a time. For the phase-fading case, there is no
channel diversity gain. Activating more than one nodes at a time
reduces the achievable rate due to the interference transmission
from misinformed nodes. For the nonfading case, the diversity
gain is so strong that it counteracts the rate loss due to the interfer-
ence from misinformed sensors. For the Rayleigh-fading case,
the diversity gain is in between. The optimal has a tradeoff
between the diversity gain and the interference loss.

VIII. CONCLUSION

We have considered and modeled the communication aspects
of cooperative sensor networks with misinformed sensors. We
have derived the capacity expressions for three system config-
urations: C-SENMA with Polling with No Energy constraints,
C-SENMA with No Polling with No Energy constraints, and
C-SENMA with No Polling with an Energy constraint. For
C-SENMA PNE, there is no rate loss with the presence of
misinformed sensors. For C-SENMA NPNE, the capacity is
lowered by a factor of compared to systems without
misinformed sensors.

We have extended the results to systems with multiple si-
multaneous transmissions and studied the effect of fading on
the achievable rate of a Gaussian MAC with a total power con-
straint. The optimal number of sensors to activate at a time is
infinity for the nonfading case, one for the phase-fading case.
For the Rayleigh-fading case, the optimal number decreases as
the orientation error probability increases.

Another possible system configuration is C-SENMA with
Polling with an Energy constraint (PE). Obviously, ,
converging to as the energy limit goes to infinity, is
an achievable rate for C-SENMA PE. With similar strategies
used in proving Theorem 1 (first probe the correctness of the
nodes’ local messages, then poll a node that is most likely to
be correct up to its transmission limit, and then repeat the pro-
cedure of probing and polling), it can be shown that there exist
an achievable rate for C-SENMA PE that converges to
as increases. However, the exact capacity expression for
C-SENMA PE with finite is unknown due to the flexibility
of its polling strategies.

Besides the investigation of the achievable rate of C-SENMA
PE, future research directions on cooperate SENMA also in-
clude the effect of noise correlation and distance differences
between nodes and the access point on the achievable rate of
C-SENMA. As the network becomes denser and larger, noise is
likely to be correlated among nearby sensors, and some nodes
may have better channels due to shorter distance to the mo-
bile access point. In this paper, we focused on the information
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retrieval aspect of the cooperative sensor network with misin-
formed nodes. Another possible future research is to investi-
gate a framework that unifies the sensing and the information
retrieval aspects of the sensor network.

APPENDIX I
PROOF OF LEMMA 1

Let have joint distribution . Since
converges to , we have the variance of con-
verges to the variance of as goes to infinity. There-
fore, the variance of is bounded away from infinity
for large . Thus, by the weak law of large numbers on triangular
arrays (e.g., see [22, Theorem (5.4)])

in prob.

Since converges to , we have

in prob.

Similarly

in prob.

in prob.

The first part of the lemma, (8), is established from the above
three convergences in probability.

To prove the second part of the lemma, we first establish two
properties of the typical set . Since

we have

(24)

If , for all , we have

(25)

since otherwise and therefore,

contradicting the assumption that .
With the above two properties of , we are ready to prove

the second part of the lemma. Since and have finite support
and converges to as goes to infinity, for
the same , there exists such that for all and for
all where

(26)

Therefore, for

(27)

(28)

where (27) is due to (25) and (26), and (28) is due to (24).

APPENDIX II
PROOF OF PROPOSITION 1

Given for , we have

where

The mutual information is measured in nats. Let de-
note the th component of the directional vector on the proba-
bility simplex plane . To prove that
is concave in the input distribution , we need to show
that, when for all , and

, the following inequality holds:

Some calculations give

(29)
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It is then sufficient to prove that for all , the expres-
sion inside the brackets of (29) is nonpositive, which will be
shown next. For notation simplicity, for a given , let

, and

We need the following lemma to prove the nonpositivity of (29).

Lemma 2: For

Proof: When . For

Therefore, the lemma is established.

If , applying the lemma to , we have

The preceding inequality also holds for . Thus, the expres-
sion inside the brackets of (29) is upper-bounded as follows:

where

Therefore, the expression inside the brackets of (29) is nonpos-
itive, proving the proposition.

APPENDIX III
PROOF OF PROPOSITION 2

Let , be i.i.d. Bernoulli with support and
mean . Then is binomially distributed. Let

We have

Since is continues at , for all
, there exists a such that for all and

.
For the same and

(30)

For large . Therefore, due to the continuity of ,
the first term in (30) is upper-bounded by . The third term,
by the weak law of large number, is upper-bounded by for
large . We bound the second term as follows. For and

, we have

For large such that , we have

Hence, by Chebyshev inequality

for large

Therefore,

for large

Since is arbitrary, we have
, proving the proposition.
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APPENDIX IV
PROOF OF PROPOSITION 3

The following lemma and corollary are used in the proof of
Proposition 3.

Lemma 3: For , and , let
for . The following inequality holds:

(31)

Proof: Both sides of (31) can be written as the sum
of terms , where is the frequency of . Let

be a -dimensional vector with nonnegative
integer entries. Rewrite the left-hand side (LHS) of (31) as

(32)

Rewrite the right-hand side (RHS) of (31) as

(33)

where is the count associate with the term . Next we
show a lower bound on . For all , the set

has elements that contain in the summation.7 To calculate
, we first choose from the set elements that contains in

the summation, which has combinations. And then choose
from the remaining set elements that contains in the sum-
mation. Since the remaining set has at least elements that
contains in the summation, the second step has at least
combinations. The procedure goes on until choosing elements
containing is finished. Therefore, we have

(34)

The desire result is obtained from (32), (33), and (34).

Corollary 1: For , and , let
. The following inequality holds:

7Here, r is equal to r for j = 1; . . . ; d � 1.

Proof: Consider permutation on the domain . From
Lemma 3 and since is a permutation

(35)

Rewrite the LHS of (35) as follows:

(36)

Equations (35) and (36) conclude the proof.

For , since the derived random variables are

independent of contribute power to the
additive noise, where is the th diagonal entry of . Since
the channel gains are uniformly distributed around the unit circle
and are Gaussian, we have

Therefore, for

(37)



YANG AND TONG: COOPERATIVE SENSOR NETWORKS WITH MISINFORMED NODES 4133

where (37) is due to Corollary 1. Therefore, the achievable rate
with the Gaussian codebook is upper-bounded as
follows:

The achievability part of Proposition 3 can be verified from
Theorem 5.
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