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Multiplexing Two Information Sources over Fading

Channels: A Cross-layer Design Perspective
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Abstract

We consider the transmission over an unknown frequency-selective channel of two indepen-

dent sources with different application-layer characteristics: one source (such as voice) has a low

information rate with a strict delay constraint; the other (such as data) has a high rate but without

any delay constraints. We proposed a system structure that jointly considers the different decoding

requirements of the application layer and the unknown fading nature of the physical channel. In

the proposed communication system, pilot symbols are not present and the low-rate information is

decoded non-coherently first. The decoded low-rate codewords are then used for channel estimation

to facilitate coherent decoding of the high-rate source. For a fixed detection error probability of the

low-rate source, we derive achievable rate expressions for the high-rate source. We demonstrate a

convergence behavior of the achievable rate of the high-rate source as the decision error probability

of the low-rate source goes to zero. Numerical results show that the achievable rate of the high-rate

source converges to that achievable by a training-based scheme at moderate decision error levels.
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I. INTRODUCTION

A. Motivation

We consider the transmission of a high-rate source mixed with a delay-sensitive low-rate

source over an unknown frequency-selective wireless channel. One example is transmitting

low-rate voice and high-rate data over the same link. Another is multiplexing protocol

information along with high-rate data. In digital video broadcasting [1], for example, control

information such as frame sequence numbers and modulation schemes is transmitted with

video data.

We assume that there is a delay constraint imposed on the low-rate source, such as in

the case of voice and other real-time traffic. Therefore the codeword length for the low-rate

source cannot be made arbitrarily long. The low-rate messages are allowed to be decoded

with a certain error probability. For the high-rate source such as data traffic, on the other

hand, our goal is to provide the highest rate at which reliable communication is possible.

Therefore, we allow its codeword length to be sufficiently long to satisfy any predetermined

error probability.

We assume a time-varying ergodic block fading channel, unknown at both transmitting and

receiving ends. The optimal approach in the information theoretic setting is to encode the

two sources jointly (across fading blocks) and to perform non-coherent decoding that fully

exploits the channel statistics. Such an approach, despite its theoretical significance, provides

little guidance in practical implementation.

A layered, standard practical approach is to include pilot symbols in data packets. The

channel acquisition in the physical layer is made using the pilot symbols (and possibly data

symbols as well) within each block and the decoder performs coherent decoding using the

estimated channel. The demultiplexing of the two sources is carried out in a higher layer. Such

a layered approach, despite its simplicity, requires very high signal-to-noise ratio (SNR) in the

physical layer in order to satisfy simultaneously the requirements of the application layer: the

stringent delay constraint of the low-rate source and the low decoding error requirement of

the high-rate source. Such an approach treats the two types of sources equally without taking

into account the different decoding requirements set by the application layer. Furthermore,

the use of pilot symbols reduces the number of channel uses available for data transmission

and is in general suboptimal.

Can one exploit the decoding requirements from the application layer for a better physical
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channel utilization? Can pilot symbols be removed to save the bandwidth? One possible

approach is to use blind channel estimation techniques that acquire the common channel

without requiring pilot symbols. However, the analysis of blind channel estimation coupled

with coherent detection is intractable, and therefore, its performance unknown. In this paper,

from a cross-layer perspective, we propose an approach that explicitly considers the decoding

constraints from the application layer for a better physical layer efficiency.

B. Summary of Results

We propose a system structure in which the two sources are encoded independently in the

physical layer. We use a sequential decision-directed receiver where a non-coherent detection

is first used to decode the low-rate source. The decoded codewords are then used as pilots

to estimate the high-rate channel response. The idea is to exploit the high redundancy in

the coded low-rate source to cope with the channel uncertainty. Once the codewords of

the low-rate source are obtained, they are almost as good as training for obtaining accurate

channel estimates for the coherent detection of the high-rate source. Such an approach, jointly

considering the application layer requirements and the physical channel uncertainty, requires

lower SNR and has a higher channel utilization than the layered approach.

The problem would be trivial, of course, if we assumed that the low-rate source were

always decoded correctly. In this paper, we make an explicit assumption that decoding errors

may be present for the low-rate source and focus on the achievable rate for the high-rate

source. We demonstrate that when the low-rate source has an error rate below 10−3, which

is a moderate error probability requirement for voice applications, the performance of the

system for the high-rate source is close to that when the low-rate source is substituted by

pilot symbols.

We first provide a lower bound on the achievable rate for the high-rate source assuming

that the decoded low-rate source (with errors) provides partial channel state information.

This lower bound generalizes a channel capacity bounding technique first popularized by

Medard [2]. Next, we provide an explicit evaluation of the lower bound when the low-

rate source uses orthogonal signaling—a natural choice for non-coherent detection. We then

consider specific low-rate decoders and evaluate the performance of the high-rate source

under different decoding error probabilities of the low-rate source. Numerical examples are

included to illustrate the effect of the decision error on the achievable rate for the high-rate

source.
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C. Related Work

In the framework of transmitting mixed-rate sources as considered in this paper, one

application is to model explicitly the protocol information (such as headers and other con-

trol information) as the low-rate source. The idea of considering protocol information in

transmission was first considered by Gallager [3], where the amount of protocol information

needed aside from data to reconstruct random arrival sources is studied from an information

theoretical perspective. A practical solution that explicitly uses the low-rate source for channel

estimation and equalization was considered in [4], where it was assumed that the low-rate

source was decoded without error. In this work, the low-rate decoding error is taken into

consideration in the analysis.

The fading channel capacity has been a popular research topic. A commonly used block

fading channel model is given by

Yi×j = Hi×kXk×j + Wi×j

where the subscripts denote the dimension of the matrices, and Yi×j is the reception matrix,

Hi×k the channel matrix, Xk×j the input matrix, Wi×j the noise matrix. Hi×k and Wi×j are

ergodic and independent, and independent of the input Xk×j . In the multiple-input-multiple-

output (MIMO) flat fading case (see, e.g., [5]), i is the number of receivers, j the coherence

time during which the channel stays constant, and k the number of transmitters. In the single-

input-single-output (SISO) frequency selective case (see, e.g., [6]), j = 1, i is the receive

vector length, and k the transmit vector length. In the literature, extensive research has been

done on the fading channel capacity for different assumptions on the knowledge of the fading

channel Hi×k. Telatar obtained a closed-form expression for the capacity of the Gaussian

channel with Rayleigh fading assuming prefect fading knowledge at the receiver [7]. For the

realization of Hi×k unknown at the receiver, [8] and [9] address the properties of the capacity

achieving input distribution. However, there are no closed-form expressions for the channel

capacity.

Between the two extreme assumptions on the knowledge of the channel state, other work

assumes that the receiver has partial information on the channel response, either provided

by imperfect channel estimation and tracking or by some genie. The capacity metric with

partial side information is difficult to obtain analytically. As a result, lower bounds on the

channel capacity (achievable rates) are often used as the performance measure of a system

with partial side information. Most of the work assumes Gaussian codebooks and an ML
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decoder to compute an achievable rate (e.g., see [5], [6], [10]–[18]). In their analysis, it is

assumed that

E[Hi×k

∣∣ Ĥi×k] = Ĥi×k (1)

where Ĥi×k is the channel estimate (side information). The above assumption is valid if the

MMSE channel estimator is used, which has a simple form if the channel is estimated based

only on the outputs due to known pilot symbols. In this work, we propose a channel estimation

structure that utilizes the decoded low-rate messages as pilots for channel estimation. The

resulted channel estimate does not satisfy (1). To obtain an achievable rate expression, one can

apply [19, Theorem 4.0.2], which is more general and does not require the side information

to satisfy (1). In this work, we obtain an achievable rate expression that is larger than or

equal to [19, Theorem 4.0.2] and use it to evaluate the performance of the decision-directed

receiver structure.

D. Notations

For convenience, denote the probability density function (p.d.f.) of a circularly symmetric

complex Gaussian vector z of length L with mean a and covariance matrix Q by

Nz

(
a,Q

)
,

1

πL|Q|e
−(z−a)HQ−1(z−a).

When there is no ambiguity, we use N
(
a,Q

)
to denote Nz

(
a,Q

)
. Let diag(z) be the diagonal

matrix with the diagonal entries equal to the entries of vector z. Let (·)∗ and (·)H denote

conjugate and conjugate transpose, respectively.

The paper is organized as follows. The system model is introduced in Section II. In

Section III, we derive a lower bound on the mutual information with Gaussian codebooks and

side information and apply the lower bound to obtain an achievable rate expression for the

high-rate source by the decision-directed structure. Under the assumptions of binary low-rate

orthogonal signaling, the computational complexity of the achievable rate is further reduced

to that of a real double integral. Numerical results are presented in Section IV and the paper

is concluded in Section V.

II. SYSTEM MODEL

A. Channel Model

We assume an ISI channel of length m and it experiences identical independent distributed

(i.i.d.) Rayleigh block fading with coherence interval Tc. The channel response, unknown at
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either the transmitter or the receiver, remains constant during one coherence interval Tc and

changes to an independent value in the next interval. Denote hk = [hk
1, h

k
2, . . . , h

k
m]T the

channel response at the k-th coherence interval. The channel responses h1,h2, . . . are i.i.d.

N (0, 1
m
I).

We assume that the system uses orthogonal-frequency-division-multiplexing (OFDM) mod-

ulation with inverse-discrete-Fourier-transform (IDFT) block size T and cyclic prefix length

Tc − T . Further assume Tc − T ≥ m − 1. The channel is then converted into T parallel flat

fading channels: 


yk
1

yk
2

...

yk
T




︸ ︷︷ ︸
yk

=




gk
1 0 · · · 0

0 gk
2

... . . .

0 gk
T




︸ ︷︷ ︸
Gk




xk
1

xk
2

...

xk
T




︸ ︷︷ ︸
xk

+wk

where the superscript k represents the OFDM block index. xk and yk are the input and

output vectors in the k-th block, respectively. We assume a power constraint on each input

position of xk: E
[
|xk

i |2
]
≤ P . The white additive noise wk is i.i.d. N (0, I) across blocks. The

i-th diagonalized channel response gk
i is the i-th Fourier coefficient of the T -point discrete-

Fourier-transform (DFT) of hk, i.e.,
[
gk
1 , . . . , g

k
T

]T
= Fhk, where F is the truncated DFT

matrix of size T × m with

[F]il = exp
−j2π(i − 1)(l − 1)

T
.

B. System Structure

We assume that there are two independent information sources to be communicated over

the unknown frequency-selective fading channel. One source has a low information rate Rl

and an encoding delay constraint of N blocks, the other a high information rate Rh and no

delay constraints. The low-rate source with the delay constraint may be voice or protocol

information that is delay-sensitive. The high rate source without delay constraints may be

delay-insensitive data.

Since the two sources have different delay requirements, we assume that the two sources

are encoded separately and transmitted over dedicated tones (Fig. 1). Suppose that Tl tones

are allocated for the low-rate transmission and Th tones for the high-rate transmission. Denote

Πl ∈ {0, 1}Tl×T and Πh ∈ {0, 1}Th×T the tone selection matrices for the low-rate and high-

rate transmissions respectively, where a tone selection matrix is part of a permutation matrix
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that connects each input position to a distinct tone. Thus we have xk
l = Πlx

k and xk
h = Πhx

k

as the channel inputs for the two sources respectively. And the channel is given by

yk
l = Gk

l x
k
l + wk

l (2)

yk
h = Gk

hx
k
h + wk

h (3)

where Gk
l = diag(ΠlFhk) and Gk

h = diag(ΠhFhk).

PSfrag replacements

Encl

Ench




g1

. . .

gT




Mh

M i
l

M̂h

M̂ i
l

Decl

Dech

Πl
ΠT

l

Πh ΠT
h

xl

xh

x

+

+

wl

wh

yl

yh

N

n

Fig. 1. The system structure.

Because of the different delay requirements, the information bit flows from the two sources

are collected as messages and encoded into codewords based on different time scales. Thus,

multiple low-rate messages are sent during the transmission of one high-rate message, which,

of course, has much more information bits packed due to a higher rate and a longer duration.

Suppose that the low-rate and high-rate codewords have block lengths N and n, respectively.

Denote Mh ∈ {1, . . . , 2nRh} the high-rate message and M i
l ∈ {1, . . . , 2NRl}, 1 ≤ i ≤ b n

N
c,

the i-th low-rate message during the transmission of Mh. Let {z}j
i denote (zi, . . . , zj). Then

M i
l is encoded into codeword {xl}iN

1+(i−1)N and Mh is encoded into codeword {xh}n
1 (Fig. 2).

The low-rate symbols xl’s and the high-rate symbols xh’s are multiplexed through the tone

selection matrices Πl and Πh, obtaining the input sequence {x}n
1 to the OFDM modulation.

On the receiver side, due to the delay constraint, we assume that M i
l is decoded based on

{yl}iN
1+(i−1)N only. Without any delay constraints, the optimal high-rate receiver decodes Mh

based on both {yh}n
1 and {yl}n

1 with a maximum likelihood (ML) decoder.

When the low-rate transmission is predetermined, i.e., known pilot symbols are transmitted,

Fig. 1 reduces to a training-based scheme.

C. Decision-directed Receiver

Due to the complexity of the optimal high-rate receiver, in this paper, we consider a receiver

structure with a decision-directed channel estimator (Fig. 3). For simplicity, we assume that
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PSfrag replacements

x1
lx1

l x2
l xN

l
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· · ·· · · · · ·
M1

l M2
l

Tl

xl

Πl

Πh

xh

x1
h x2

h xn
h

Th

x

x1 x2 xn

Fig. 2. The encoding structure.

the low-rate encoder uses binary constant modulus modulation, i.e., xk
l ∈ {u1,u2} where

|ui,j|2 = P for i = 1, 2 and j = 1, . . . , Tl. Rewrite the low-rate channel (2) as

yk
l = diag(xk

l )ΠlF︸ ︷︷ ︸
Sk

hk + wk
l . (4)

The symbol vector xk
l ∈ {u1,u2} has a one-to-one correspondence with the symbol matrix

Sk ∈ {U1,U2}, where Ui = diag(ui)ΠlF for i = 1, 2.

PSfrag replacements

{yl}

yk
l

Det Decl

EnclM.M. Est

{S̃} M̂l

(
M̂l,k

)

Ŝk

ĥk

Dech
yk

h

Fig. 3. The decision-directed high-rate receiver. In the modified version, M̂l,k is decoded based on {S̃}k
− only.

As shown in Fig. 3, the low-rate receiver first performs the symbol ML detection, and then

decodes the low-rate messages. The decoded low-rate messages are re-encoded to facilitate

the channel estimation, and the channel estimates are used to assist the high-rate decoding.
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More specifically, the j-th symbol matrix Sj , 1 ≤ j ≤ n, is detected by

S̃j = arg max
S∈{U1,U2}

pj(yl

∣∣S) (5)

where pj(yl

∣∣S) is the conditional p.d.f. of y
j
l given Sj . The message M i

l , 1 ≤ i ≤ b n
N
c,

is then decoded based on {S̃}iN
1+(i−1)N . Denote M̂ i

l the decoded i-th low-rate message. To

estimate the channel in the k-th block hk, where 1 + (i − 1)N ≤ k ≤ iN for some i, the

decoded low-rate message M̂ i
l is re-encoded to obtain Ŝk, the k-th symbol decision after

error correction. The channel output yk
l and the decision Ŝk are plugged into the mismatched

minimum-mean-squared-error (MMSE) estimator to obtain the k-th channel estimate ĥk,

which assumes the decision Ŝk is always correct,

ĥk(Ŝk,yk
l ) = E

[
hk

∣∣Sk = Ŝk,yk
l

]
= (Ŝk)H

(
Ŝk(Ŝk)H + mI

)−1
yk

l . (6)

The high-rate message Mh is then decoded based on {yh}n
1 and {ĥ}n

1 .

Due to the delay constraint, the decoding error of the low-rate source is lower bounded

from zero. However, if the information rate of the high-rate source is below some threshold,

the decoding error of the high-rate source can be made arbitrarily small by applying arbitrarily

long high-rate codewords. In the next section, we study the rate at which the high-rate source

can be reliably communicated with the decision-directed receiver structure.

III. HIGH-RATE CHANNEL ACHIEVABLE RATE

We consider the achievable rate for the high-rate channel in this section. We first prove

a lower bound on the mutual information with Gaussian codebooks and side information.

The lower bound is applied to obtain an expression for the achievable rate with a Gaussian

codebook and the decision-directed receiver. Under the assumption of binary orthogonal low-

rate signaling and a modified channel estimator, the achievable rate is further reduced to an

expression that involves only a real double integral of an algebraic function.

A. Lower Bound on Mutual Information with Gaussian Codebooks for the High-rate Source

Since the low-rate messages, unknown to the receiver, are encoded into codewords of length

N , we consider the N -th extension of the channel and omit the low-rate message index i. Let

{z} denote {z}N
1 . For any high-rate input distribution p({xh}), the rate 1

N
I({xh}; {yh}, {ĥ})

is achievable by the decision-directed receiver structure. The optimal input distribution p({xh}),
however, is difficult to obtain. In this paper, we are interested in the achievable rate by
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an i.i.d. Gaussian codebook, i.e., when x1
h, . . . ,x

N
h are i.i.d. N (0, P I), and denote the

mutual information when using a Gaussian codebook as Ig(·; ·). The mutual information
1
N

Ig({xh}; {yh}, {ĥ}), however, is still difficult to evaluate. In this section, we derive a

simple achievable rate by lower bounding the mutual information.

For convenience, define a function F on the domain D , {(c, r, P ) : c ∈ C, r ∈ R, r ≥
|c|2, P ∈ R+}:

F (c, r, P ) , log
(
1 +

P |c|2
1 + P (r − |c|2)

)
. (7)

Lemma 1: Let x ∼ N (0, P ) and let w ∈ C with zero mean and unit variance be indepen-

dent of x. Let g ∈ C and GSI belongs to an arbitrary domain, and let (g,GSI) be independent

of (x,w). Let y = gx + w. Let f be a measurable function of GSI , and z = f(GSI). Then

Ig(x; y,GSI) ≥ Ez

[
F

(
E[g

∣∣ z], E
[
|g|2

∣∣ z
]
, P

)]
. (8)

The lower bound is maximized by letting z = GSI .

Proof: See Appendix I.

A lower bound expression on the mutual information with Gaussian codebooks and side

information was obtained in [19] by using z = E[g
∣∣ GSI ]. However, (8) is more general and

the maximal is achieved when z = GSI .

Let xk
h,i and yk

h,i denote the i-th entries of xk
h and yk

h respectively. Let gk
h,i denote the i-th

diagonal entry of the matrix Gk
h = diag(ΠhFhk). Since xk

h,i, 1 ≤ i ≤ Th and 1 ≤ k ≤ N ,

are i.i.d., the Gaussian mutual information is lower bounded as follows,

1

N
Ig

(
{xh}; {yh}, {ĥ}

)
=

1

N
h
(
{xh}) −

1

N
h({xh}

∣∣ {yh}, {ĥ}
)

=
1

N

( N∑

k=1

Th∑

i=1

h(xk
h,i)

)
− 1

N
h
(
{xh}

∣∣ {yh}, {ĥ}
)

≥ 1

N

N∑

k=1

Th∑

i=1

(
h(xk

h,i) − h(xk
h,i

∣∣ yk
h,i, ĥ

k)
)

(9)

=
1

N

N∑

k=1

Th∑

i=1

Ig

(
xk

h,i; y
k
h,i, ĥ

k
)

≥ 1

N

Th∑

i=1

N∑

k=1

Eĥk

[
F

(
E[gk

h,i

∣∣ ĥk], E
[
|gk

h,i|2
∣∣ ĥk

]
, P

)]
(10)

where (9) is because conditioning reduces entropy, (10) by viewing ĥk as the side information

and applying Lemma 1.
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Thus we have obtained a lower bound on 1
N

Ig

(
{xh}; {yh}, {ĥ}

)
. Denote pk(ĥ

∣∣h) the

conditional p.d.f. of ĥk given hk. If we know pk(ĥ
∣∣h) for all k ∈ {1, . . . , N}, it is possible

to evaluate (10). However, in some situations, we may only be able to access the average of

pk(ĥ
∣∣h),

p(ĥ
∣∣h) ,

1

N

N∑

k=1

pk(ĥ
∣∣h). (11)

The next proposition summarizes an achievable rate expression that does not depend on

individual pk(ĥ
∣∣h)’s.

Since (xk
h,h

k,wk
h) are i.i.d. across block index k ∈ {1, . . . , N}, there is no lost of generality

in considering k = 1 for the next analysis. Introduce a new random vector ĥ with p(ĥ
∣∣h)

as the p.d.f. conditioning on h1. Let (h1, ĥ), w1
h, and x1

h be independent.

Proposition 2: The Gaussian mutual information is lower bounded by

1

N
Ig

(
{xh}; {yh}, {ĥ}

)
≥

Th∑

i=1

Eĥ

[
F

(
E[g1

h,i

∣∣ ĥ], E
[
|g1

h,i|2
∣∣ ĥ

]
, P

)]
, Rd. (12)

Proof: See Appendix II.

B. Achievable Rate under Binary Orthogonal Low-rate Signaling

Since g1
h,i is a function of h1, if p(h1, ĥ) is known, it is possible to evaluate the achievable

rate Rd by (12). However, the computation involves an m-dimensional complex integration

and the calculations of the conditional mean E
[
g1

h,i

∣∣ ĥ
]

and the conditional second moment

E
[
|g1

h,i|2
∣∣ ĥ

]
for all ĥ. Next, under the assumptions of binary orthogonal low-rate signaling

and a modified channel estimator, we reduce Rd to an expression that involves only a double

integral.

We assume that Tl ≥ 2m. The binary low-rate signaling set {u1,u2} and the low-rate tone

selection matrix Πl are designed such that for i, j = 1, 2,

UH
i Uj =





PTlI if i = j

0 if i 6= j
(13)

where Ui = diag(ui)ΠlF. Examples of orthogonal signaling designs include equally spaced

low-rate tones and {u1,u2} being columns of a Fourier transform matrix. For instance, if T =

qTl where q is an integer, allocate to the low-rate channel the tones {p, p+q, . . . , p+q(Tl−1)}
where 1 ≤ p ≤ q. Let ui,l = exp −j2π(i−1)(l−1)m

Tl
for i = 1, 2 and l = 1, . . . , Tl. The resulting

U1 and U2 have the orthogonal property (13).
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Because of the orthogonality, we have (Ŝk)HŜk = PTlI. Thus
(
I +

1

m
Ŝk(Ŝk)H

)−1

= I − 1

m + PTl

Ŝk(Ŝk)H . (14)

Therefore, the channel estimator (6) reduces to

ĥk =
1

m + PTl

(
Ŝk

)H
yk

l (15)

=
1

m + PTl

(
Ŝk

)H(
Skhk + wk

l

)
, (16)

where (16) is obtained by substituting the low-rate channel (4) into (15).

In the analysis, we consider a modified channel estimator Fig. 3. Consider estimating the

k-th channel hk, 1 ≤ k ≤ N . Let {z}k
− denote {z1, . . . , zk−1, zk+1, . . . , zN}. In the modified

version, the low-rate message is decoded based on the observation {S̃}k
− only. Denote M̂l,k

the output of the modified low-rate decoder when S̃k is discarded. The rest of the operation

of the modified estimator remains the same as the original version: M̂l,k is re-encoded to

obtain Ŝk; Ŝk and yk
l are plugged into the mismatched MMSE estimator (15) to obtain the

estimate ĥk. Since one of the inputs to the low-rate decoder is discarded in the modified

estimator, we expect that the original version has a better performance.

As described above, Ŝk in the modified estimator is obtained based on the observation of

{yl}k
−, a function of ({h}k

−, {wl}k
−, {S}k

−). Since (hk,wk
l ) is independent of ({h}k

−, {wl}k
−, {S}),

(hk,wk
l ) is independent of (Sk, Ŝk). Therefore, from (16) and the orthogonality of the low-

rate symbols (13), the conditional p.d.f. of ĥk conditioning on hk, Sk and Ŝk is given by

pk

(
ĥ
∣∣h,S, Ŝ

)
=





Nĥ

(
PTl

m+PTl
h, PTl

(m+PTl)2
I
)

if S = Ŝ

Nĥ

(
0, PTl

(m+PTl)2
I
)

if S 6= Ŝ
.

Denote Pk(S, Ŝ) the probability mass function (p.m.f.) of (Sk, Ŝk). Apply the independence

of (Sk, Ŝk) and hk and rewrite (11) as

p(ĥ
∣∣h) =

1

N

N∑

k=1

(∑

S,Ŝ

Pk(S, Ŝ)pk(ĥ
∣∣h,S, Ŝ)

)

= (1 − θ)Nĥ

( PTl

m + PTl

h,
PTl

(m + PTl)2
I
)

+ θNĥ

(
0,

PTl

(m + PTl)2
I
)
, (17)

where the average decision error probability

θ ,
1

N

N∑

k=1

Pr(S
k 6= Ŝk).

It is worth noting that the decision error probability at different blocks Pr(S
k 6= Ŝk) may

not be the same, depending on the low-rate codebook. However, p(ĥ
∣∣h) depends only on θ.
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Applying (17) to (12) gives the following proposition:

Proposition 3: Under the assumption of the orthogonal low-rate signaling and the modified

channel estimator, the achievable rate is given by

Rd = Th

(
(1 − θ)f

( PTl

m(m + PTl)

)
+ θf

( PTl

(m + PTl)2

))
, (18)

where

f(λ2) ,





∫ ∞

0

∫ ∞

0

vm−2

2
exp(−(v1+v2)/2)

2m(m−2)!
f1

(
mλ2v1

2
, λ2(v1+v2)

2

)
dv1dv2 if m ≥ 2,

∫ ∞

0
exp(−v1/2)

2
f1

(
λ2v1

2
, λ2v1

2

)
dv1 if m = 1,

f1(a
2, b2) , log

(
1 +

Pf2(a
2, b2)

1 + P
(
f3(a2, b2) − f2(a2, b2)

)
)
,

f2(a
2, b2) , a2

( 1

f4(b2)
(1 − θ)f5

(
b2,

PTl

m(m + PTl)

))2

,

f3(a
2, b2) ,

1

f4(b2)

(
(1 − θ)f5

(
b2,

PTl

m(m + PTl)

)( m

m + PTl

+ a2
)

+ θf5

(
b2,

PTl

(m + PTl)2

))
,

f4(b
2) , (1 − θ)f5

(
b2,

PTl

m(m + PTl)

)
+ θf5

(
b2,

PTl

(m + PTl)2

)
,

f5(b
2, c2) ,

exp(−b2/c2)

(πc2)m
.

Proof: See Appendix III.

Equation (18) involves only a double integral function, which can be readily numerical

evaluated. Applying Dominant Convergence Theorem to (18) gives the following corollary:

Corollary 4: The achievable rate Rd has the following convergence,

lim
θ→0

Rd = Th

∫ ∞

0

e−z log
(
1 +

P 2Tlz

m + P (m + Tl)

)
dz , Rt. (19)

The rate Rt is achievable by the training-based scheme [6]. Corollary 4 shows that the

achievable rate by the decision-directed receiver converges to that by the training-based

scheme as the decision error probability goes to zero.

C. Low-rate Decoder

As shown in (18), the achievable rate Rd is affected by the low-rate decision error θ. Here

we study the performance of the modified low-rate decoder. We first derive the crossover

probability of the equivalent binary symmetric channel (BSC), and then obtain the error

probability of the modified decoder with a block code or a random code.

Rewrite the ML low-rate symbol detector (5) as

S̃j = arg max
S∈{U1,U2}

N
y

j
l

(
0,

1

m
SSH + I

)
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= arg min
S∈{U1,U2}

(yj
l )

H
( 1

m
SSH + I

)−1

y
j
l (20)

= arg max
S∈{U1,U2}

∣∣∣SHy
j
l

∣∣∣
2

(21)

where (21) is because of (14) and (20) because of the following equality,

det
( 1

m
SSH + I

)
= det

( 1

m
SHS + I

)
=

(m + PTl

m

)m

.

The ML detector (21) converts the low-rate channel into a BSC. The crossover probability

of the BSC, ε , Pr(S̃
j 6= Sj), is given by

ε =
m−1∑

i=0

(m − 1 + i)!

(m − 1)!i!

1

( m
m+PTl

+ 1)i

1

(1 + m+PTl

m
)m

. (22)

The derivation of (22) is given in Appendix IV.

The decision error probability θ depends on the error correction performance of the low-

rate code. We first consider using an (N, k, t) code for the low-rate source, where (N, k, t)

denotes block codes with length N , k input bits, and t bits error correction capability. Recall

that in the modified high-rate receiver (Fig. 3), M̂l,k is decoded based on {S̃}k
− only. We

replace S̃k with an independent fair coin flip output and use the decoder that corrects up to

t bits of error. The decision error probability is then bounded by

θ ≤ 1

N

N∑

k=1

Pr(M̂l,k 6= Ml) (23)

=
1

2

N−1∑

i=t+1

(
N − 1

i

)
εi(1 − ε)N−1−i +

1

2

N−1∑

i=t

(
N − 1

i

)
εi(1 − ε)N−1−i (24)

where (23) is because {Ŝk 6= Sk} implies {M̂l,k 6= Ml}, (24) due to the random replacement.

Next, we consider a random code for the low-rate source. Denote C the random codebook,

with 2NRl messages and N symbols for each message, generated with equal probability over

the binary alphabet. By the random coding argument [20], the modified low-rate decoder that

discards S̃k has the ensemble error probability, averaged over the codebook ensemble,

EC

[
Pr(M̂l,k 6= Ml

∣∣ C)
]
≤ 2−(N−1)Er( N

N−1
Rl,ε) (25)

where the random coding exponent

Er(R, ε) = max
0≤ρ≤1

(
ρ − (1 + ρ) log2

(
ε

1

1+ρ + (1 − ε)
1

1+ρ

)
− ρR

)
.

Since the right hand side of (25) does not depend on k, we have

EC

[
1

N

N∑

k=1

Pr(M̂l,k 6= Ml

∣∣ C)

]
≤ 2−(N−1)Er( N

N−1
Rl,ε),
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which, together with (23), implies that there exists a codebook such that

θ ≤ 2−(N−1)Er( N
N−1

Rl,ε). (26)

D. Optimal Decoding

In this subsection, we investigate the rate achievable by decoders without the explicit

channel estimation structure. We derive an achievable rate for the optimal decoding structure,

expressed as a function of the low-rate decoding error probability. We compare the achievable

rates by the decision-directed and the optimal-decoding receivers in Section IV and illustrate

the sub-optimality of the decision-directed structure at large decision error probabilities.

Denote γ , Pr(M̂l 6= Ml) the low-rate decoding error probability. When the explicit

channel estimation constraint is removed, the rate 1
N

I
(
{xh}; {yh}, {yl}

)
is achievable. By

the chain rule of mutual information,

I
(
{xh}; {yh}, {yl}, {xl}

)
− I

(
{xh}; {yh}, {yl}

)
= I

(
{xh}; {xl}

∣∣ {yh}, {yl}
)

≤ H
(
{xl}

∣∣ {yh}, {yl}
)

(27)

≤ H
(
{xl}

∣∣ {yl}
)

(28)

≤ H(γ) + γNRl (29)

where (27) is due to the positivity of entropy, (28) due to the fact that conditioning decreases

entropy, and (29) due to Fano’s inequality. The achievable rate by the optimal decoding

structure is therefore lower bounded by

1

N
I
(
{xh}; {yh}, {yl}

)
≥ 1

N
I
(
{xh}; {yh}, {yl}, {xl}

)
− H(γ)

N
− γRl. (30)

As γ goes to zero, the optimal receiver achieves the performance of the training based scheme
1
N

I
(
{xh}; {yh}, {yl}, {xl}

)
. Even if γ is large, the difference of the two achievable rates is

less than 1
N

+ Rl, which is small since Rl is small.

Since Rt (19) is achievable by the training-based scheme with a Gaussian codebook, we

have

1

N
Ig

(
{xh}; {yh}, {yl}, {xl}

)
≥ Rt. (31)

Applying (31) to (30) gives the achievable rate with the optimal decoder and a Gaussian

codebook

1

N
Ig

(
{xh}; {yh}, {yl}

)
≥ Rt −

H(γ)

N
− γRl , Ro. (32)
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IV. NUMERICAL RESULTS

In the first example, we assume that the low-rate channel uses the binary orthogonal

signaling and an (N, k, t) error correction code. The low-rate detector converts the low-rate

channel into a BSC with crossover probability ε (22). The decision error probability θ is

bounded by (24).

We assume the channel length m = 4, the OFDM block size T = 64, the tone allocation

(Tl, Th) = (8, 56), and the (7, 4, 1) Hamming code for low-rate error correction. Fig. 4

shows the achievable rate versus P , the signal-to-noise ratio (SNR): Rd (18) for the decision-

directed structure, Rt (19) for the training-based scheme, and Ro (32) for the optimal-decoding

structure. Also shown in Fig. 4 is the decision error probability θ. The SNR value of the

vertical line that a θ value points at is the SNR value at which the decision error probability

equals that θ value. In Fig. 4 and the following figures, achievable rates are normalized by

the OFDM block size T .
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Optimal−Decoding

θ=10−2 

θ=10−1 

Fig. 4. Normalized achievable rate versus SNR.

As shown in Fig. 4, when SNR increases, the low-rate decoding error probability decreases,

and the achievable rate by the decision-directed receiver converges to the achievable rate by

the training-based scheme. The convergence happens at moderate decision error probability

levels, around θ = 10−2 ∼ 10−3. The achievable rate by the optimal-decoding receiver, on
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the other hand, is very close to that by the training-based scheme regardless of the SNR

level.

In the second example, we fix SNR and the low-rate information rate Rl and vary the

low-rate code length N . The decision error probability θ decreases as the code length N

increases. Fig. 5 shows the achievable rates versus the decision error probability θ when

(Tl, Th) = (8, 56) and m = 4 under two SNR levels, P = 15dB and P = 7dB. When

the decision error probability θ goes to zero, the achievable rate Rd for the decision-directed

structure converges to Rt for the training-based scheme. The convergence happens at moderate

decision error probabilities, around θ = 10−3. The relationship between θ and N is given

by the random coding bound (26). Fig. 6 shows the achievable rate Rd versus the coding

length N when (Tl, Th) = (8, 56), m = 4, and Rl = 1/2 bits per OFDM block under two

SNR levels, P = 15dB and P = 7dB. Fig. 6 is very similar to the mirror image of Fig. 5

along the vertical axis. Fig. 6 shows how long the low-rate message should be encoded with

a random code in order to consider the low-rate decoding is error free. In Fig. 6, the curves

converge when N ≥ 20. Also shown in Fig. 5 and Fig. 6 is the achievable rate by the optima-

decoding receiver, which is very close to that by the training-based scheme, indicating the

sub-optimality of the decision-directed scheme when the decision error probability is large.
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Fig. 5. Normalized achievable rate versus decision-error probability.
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Fig. 6. Normalized achievable rate versus low-rate coding length.

V. SUMMARY

We have studied the communication of two independent sources over unknown fading

channels. We have proposed, and analyzed the performance of, a system structure (Fig. 1) that

jointly considers the different decoding requirements of the application layer and the unknown

fading nature of the physical channel for a better channel utilization. Two receiver structures

are considered. In the decision-directed structure, the low-rate transmission is utilized to

estimate the channel response, which assists the high-rate decoding. In the optimal decoding

structure, the explicit channel estimation constraint is removed.

We have derived a lower bound on the mutual information with Gaussian codebooks and

side information. The lower bound generalizes previous published results [2], [5], [6], [10]–

[19] in that it does not require the side information to satisfy (1) and it is tighter than the

result in [19]. We have used the lower bound to obtain high-rate achievable rate expressions

for both receiver structures. The calculation of the achievable rate by the decision-directed

receiver is reduced to a double integral under the assumption of binary orthogonal low-rate

signaling.

We have shown that the achievable rates by the decision-directed receiver and the opti-

mal receiver converge to that by the training-based scheme as the low-rate decision error
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probability goes to zero. By simulation, the convergence happens at moderate low-rate error

probabilities. Compared with the training-based scheme, the rate achievable using optimal

decoding is lower by at most 1
N

+ Rl regardless of the low-rate error probability. When the

low-rate error probability is large, the decision-directed structure is suboptimal. When the

low-rate decoding error probability is small, both decoding schemes provide an additional

low-rate channel while maintaining the performance of the high-rate channel close to that of

the training-based system.

APPENDIX I

PROOF OF LEMMA 1

Recall y = gx + w. We have E[xy∗
∣∣ z] = PE[g∗

∣∣ z] and E
[
|y|2

∣∣ z
]

= PE
[
|g|2

∣∣ z
]

+ 1.

Defining cov(v
∣∣ u) , E

[
|v − E[v]|2

∣∣ u
]
, we have

cov
(
x − E[xy∗

∣∣ z]

E
[
|y|2

∣∣ z
]y

∣∣∣ z
)

= E
[
|x|2

∣∣ z
]
−

∣∣E[xy∗
∣∣ z]

∣∣2

E
[
|y|2

∣∣ z
] = P − P 2

∣∣E[g∗
∣∣ z]

∣∣2

PE
[
|g|2

∣∣ z
]
+ 1

. (33)

The Gaussian mutual information is lower bounded as follows,

Ig(x; y,GSI) ≥ Ig(x; y, z) (34)

= h(x) − h(x
∣∣ y, z)

= h(x) − h
(
x − E[xy∗

∣∣ z]

E
[
|y|2

∣∣ z
]y

∣∣∣ y, z
)

(35)

≥ h(x) − h
(
x − E[xy∗

∣∣ z]

E
[
|y|2

∣∣ z
]y

∣∣∣ z
)

(36)

≥ h(x) − Ez log

(
πe cov

(
x − E[xy∗

∣∣ z]

E
[
|y|2

∣∣ z
]y

∣∣∣ z
))

(37)

= Ez

[
F

(
E[g

∣∣ z], E
[
|g|2

∣∣ z
]
, P

)]
(38)

where (34) is because of the data processing inequality, (35) because yE[xy∗
∣∣ z]/E

[
|y|2

∣∣ z
]

is a function of (y, z), (36) because conditioning reduces entropy, (37) because the Gaussian

distribution maximizes entropy among distributions with the same covariance, (38) because

of (33) and the fact that x is complex Gaussian distributed with variance P . Thus we have

proved the first part of Lemma 1. Next, we show the optimality of z = GSI .

Lemma 5: For r1, r2, r3 ∈ R and r1 > r2
2 + r2

3, the function log
(
r1/(r1 − r2

2 − r2
3)

)
is

convex in the triple (r1, r2, r3).

Proof: Let h denote the function and let ∇2h(r1, r2, r3) ∈ R3×3 denote the Hessian

matrix with ∂2h
∂ri∂rj

as the entry in the i-th row and the j-th column. Since the domain r1 >
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r2
2 + r2

3 is convex, we only need to show that ∇2h(r1, r2, r3) is non-negative definite in the

domain r1 > r2
2 + r2

3. Equivalently, we need to show that the matrix

A = r2
1(r1 − r2

2 − r2
3)

2 · ∇2h(r1, r2, r3)

is non-negative definite. Some algebra reveals that

det(λI − A) = (λ2 − αλ + β)(λ − γ),

α = 2r2
1(r1 + r2

2 + r2
3) + (r2

2 + r2
3)(2r1 − r2

2 − r2
3),

β = 2r2
1(r

2
2 + r2

3)
2(r1 − r2

2 − r2
3),

γ = 2r2
1(r1 − r2

2 − r2
3).

Since r1 > r2
2 + r2

3, we have α, β, γ ≥ 0. Therefore, the three eigenvalues of the symmetric

matrix A are non-negative, proving the non-negative definiteness of A.

Corollary 6: For a fixed P > 0, F (c, r, P ) is convex in the pair (r, c) in the domain D.

Proof: Suppose c = cr + jci where cr, ci ∈ R. Let r0 = r + 1/P . We have F =

log
(
r0/(r0 − c2

r − c2
i )

)
and r0 > c2

r + c2
i . By Lemma 5, F is convex in (r0, cr, ci), which is a

linear function of (r, c), thus proving the convexity of F in (r, c).

Since z is a function of GSI , we have Eg|z[g] = EGSI |zEg|GSI ,z[g] = EGSI |zEg|GSI
[g].

Similarly, Eg|z

[
|g|2

]
= EGSI |zEg|GSI

[
|g|2

]
. Therefore,

F
(
Eg|z[g], Eg|z

[
|g|2

]
, P

)
= F

(
EGSI |zEg|GSI

[g], EGSI |zEg|GSI

[
|g|2

]
, P

)

≤ EGSI |z

[
F

(
Eg|GSI

[g], Eg|GSI

[
|g|2

]
, P

)]
(39)

where (39) is due to the convexity of F (Corollary 6) and the fact that Eg|GSI

[
|g|2

]
≥

∣∣Eg|GSI
[g]

∣∣2. Taking expectation over both sides of (39) concludes the proof of the optimality

of z = GSI .

APPENDIX II

PROOF OF PROPOSITION 2

Consider a fixed i ∈ {1, . . . , Th}. Denote pk(ĥ, g) the p.d.f. of (ĥk, gk
h,i) for 1 ≤ k ≤ N .

Let K ∈ {1, . . . , N} be uniform distributed and (ĥ, g) have conditional p.d.f. p(ĥ, g
∣∣ K =

k) = pk(ĥ, g). Thus,

E[gk
h,i

∣∣ ĥk = h0] = E[g
∣∣ ĥ = h0, K = k], (40)

E
[
|gk

h,i|2
∣∣ ĥk = h0

]
= E

[
|g|2

∣∣ ĥ = h0, K = k
]
. (41)
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The i-th term of (10) is then lower bounded as follows

1

N

N∑

k=1

Eĥk

[
F

(
E[gk

h,i

∣∣ ĥk], E
[
|gk

h,i|2
∣∣ ĥk

]
, P

)]

= EKEĥ|K

[
F

(
E[g

∣∣ ĥ, K], E
[
|g|2

∣∣ ĥ, K
]
, P

)]
(42)

= EĥEK|ĥ

[
F

(
E[g

∣∣ ĥ, K], E
[
|g|2

∣∣ ĥ, K
]
, P

)]

≥ Eĥ

[
F

(
E[g

∣∣ ĥ], E
[
|g|2

∣∣ ĥ
]
, P

)]
(43)

= Eĥ

[
F

(
E[g1

h,i

∣∣ ĥ], E
[
|g1

h,i|2
∣∣ ĥ

]
, P

)]
(44)

where (42) applies (40) and (41), (43) because of the convexity of F (see Corollary 6 in

Appendix I), (44) because (ĥ, g1
h,i) has the same distribution as (ĥ, g). Summing over i on

both sides of (44) and applying (10) conclude the proof.

APPENDIX III

PROOF OF PROPOSITION 3

Recall G1
h = diag(ΠhFh1). Denoting fH

i the i-th row of ΠhF, we have g1
h,i = fH

i h1.

Since h1 ∼ N (0, 1
m
I) and the p.d.f. of ĥ conditioning on h1, p(ĥ

∣∣h), is given by (17), it

can be shown that the p.d.f. of ĥ and the conditional p.d.f. of g1
h,i given ĥ are

pĥ(ĥ) = (1 − θ)Nĥ

(
0,

PTl

m(m + PTl)
I
)

+ θNĥ

(
0,

PTl

(m + PTl)2
I
)
, (45)

pg1
h,i|ĥ

(g
∣∣ ĥ) =

1

pĥ(ĥ)

(
(1 − θ)Nĥ

(
0,

PTl

m(m + PTl)
I
)
Ng

(
fH
i ĥ,

m

m + PTl

)

+ θNĥ

(
0,

PTl

(m + PTl)2
I
)
Ng(0, 1)

)
. (46)

From (46), some calculations reveal that

∣∣E[g1
h,i

∣∣ ĥ]
∣∣2 = f2

(
|fH

i ĥ|2, |ĥ|2
)
,

E
[
|g1

h,i|2
∣∣ ĥ

]
= f3

(
|fH

i ĥ|2, |ĥ|2
)
.

Therefore, it is clear that E
[
f1(|fH

i ĥ|2, |ĥ|2)
]

is the i-th term in the summation of (12).

Next, we consider the evaluation of E
[
f1(|fH

i r|2, |r|2)
]

where r has length m and distri-

bution N (0, λ2I). Let s = Ur where U is a unitary matrix and the first row of U is equal to

fH
i /

√
m. Denote sj the j-th entry of s, 1 ≤ j ≤ m. We have s ∼ N (0, λ2I), |s|2 = |r|2, and

|fH
i r|2 = m|s1|2. Define v1 , 2

λ2 |s1|2 and v2 , 2
λ2

∑m
i=2|si|2. When m ≥ 2, since s1, . . . , sm

are independent complex Gaussians, v1 and v2 are independent gamma random variables
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with p.d.f. pv1
(v) = e−v/2

2
and pv2

(v) = vm−2e−v/2

2m−1(m−2)!
, respectively [21]. When m = 1, we have

pv1
(v) = e−v/2

2
and pv2

(v) = δ(v). Therefore,

E
[
f1

(
|fH

i r|2, |r|2
)]

= E
[
f1

(
m|s1|2, |s|2

)]

= Ev1,v2

[
f1

(mλ2v1

2
,
λ2(v1 + v2)

2

)]

= f(λ2).

Since ĥ is a Gaussian mixture (45), we have

E
[
f1

(
|fH

i ĥ|2, |ĥ|2
)]

= (1 − θ)f
( PTl

m(m + PTl)

)
+ θf

( PTl

(m + PTl)2

)
.

Recall that E
[
f1(|fH

i ĥ|2, |ĥ|2)
]

is the i-th term in the summation of (12). Summing over i

gives the desired result.

APPENDIX IV

DETECTION ERROR PROBABILITY

In the derivation, we drop the symbol index j in the ML detector (21). Let ri = UH
i yl

and vi = |ri|2 for i = 1, 2. Suppose S = U1 is transmitted. The detection error probability is

ε = Pr

(
v1 ≤ v2

∣∣S = U1

)
. (47)

Recall yl = Sh + wl, h ∼ N (0, 1
m
I), wl ∼ N (0, I), and (U1,U2) are orthogonal (13).

Given S = U1, r1 and r2 are Gaussians with p.d.f. N
(
0, PTl(m+PTl)

m
I
)

and N (0, PTlI),

respectively. Because of the orthogonality of U1 and U2 (13), we have E
[
r1r

H
2

∣∣S = U1

]
= 0.

Therefore, given S = U1, r1 and r2 are independent zero mean Gaussian random vectors.

Hence, given S = U1, v1 and v2 are independently central chi-square distributed with

pv1|S

(
v
∣∣S = U1

)
=

vm−1 exp
(
− vm

PTl(m+PTl)

)
(

PTl(m+PTl)
m

)m
(m − 1)!

(48)

Pr

(
v2 ≥ v

∣∣S = U1

)
= e

− v
PTl

m−1∑

i=0

1

i!

( v

PTl

)i

(49)

[21]. By the conditional independence of v1 and v2, the detection error (47) is expressed as

ε =

∫ ∞

0

Pr

(
v2 ≥ v

∣∣S = U1

)
pv1|S

(
v
∣∣S = U1

)
dv. (50)

Substituting (48) and (49) into (50), switching the order of the integration and the summation,

and integrating produce the formula (22).

August 27, 2005 DRAFT



TO APPEAR IN EURASIP SIGNAL PROCESSING JOURNAL, 4TH QUARTER 2005 23

REFERENCES

[1] DVB-T, “Digital video broadcasting (DVB); framing structure, channel coding and modulation for digital terrestrial

television,” Jan. 2001.

[2] M. Medard, “The effect upon channel capacity in wireless communication of perfect and imperfect knowledge of the

channel,” IEEE Trans. Information Theory, vol. 46, no. 3, pp. 933–946, May 2000.

[3] R. Gallager, “Basic limits on protocol information in data communication networks,” IEEE Trans. Information Theory,

vol. 22, no. 4, pp. 385–398, July 1976.

[4] Q. Bao and L. Tong, “Protocol-aided channel equalization in wireless ATM,” IEEE J. Select. Areas. Commun., vol. 18,

no. 3, pp. 418–435, March 2000.

[5] B. Hassibi and B. Hochwald, “How much training is needed in multiple-antenna wireless links?” IEEE Trans. Info.

Theory, vol. 49, no. 4, pp. 951–963, April 2003.

[6] S. Adireddy, L. Tong, and H. Viswanathan, “Optimal placement of known symbols for frequency-selective block-fading

channels,” IEEE Trans. Info. Theory, vol. 48, no. 8, pp. 2338–2353, August 2002.

[7] I. Telatar, “Capacity of multi-antenna gaussian channels,” European Trans. Telecomm, vol. 10, no. 6, pp. 585–596,

Nov-Dec 1999.

[8] T. Marzetta and B. Hochwald, “Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading,”

IEEE Trans. Information Theory, vol. 45, no. 1, pp. 139–157, January 1999.

[9] I. Abou-Faycal, M. Trott, and S. Shamai, “The capacity of discrete-time memoryless Rayleigh-fading channels,” IEEE

Trans. Information Theory, vol. 47, no. 4, pp. 1290–1301, May 2001.

[10] H. Vikalo, B. Hassibi, B. Hochwald, and T. Kailath, “On the capacity of frequency-selective channels in training-based

transmission schemes,” IEEE Trans. Signal Processing, vol. 52, no. 9, pp. 2572–2583, Sep. 2004.

[11] S. Ohno and G. B. Giannakis, “Capacity maximizing pilots and precoders for wireless OFDM over rapidly fading

channels,” IEEE Trans. Info. Theory, vol. 50, no. 9, pp. 2138–2145, Sep. 2004.

[12] ——, “Average-rate optimal PSAM transmissions over time-selective fading channels,” IEEE Trans. Wireless Comm.,

vol. 1, no. 4, pp. 712–720, Oct. 2002.

[13] X. Ma, G. Giannakis, and S. Ohno, “Optimal training for block transmission of doubly selective wireless fading

channels,” IEEE Trans. Signal Processing, vol. 51, no. 5, pp. 1351–1366, May 2003.

[14] J. Baltersee, G. Fock, and H. Meyr, “Achievable Rate of MIMO Channels with Data-Aided Channel Estimation and

Pefect Interleaving,” IEEE Journal on Select. Areas. Commun., vol. 19, no. 12, pp. 2358–2368, December 2001.

[15] ——, “An information theoretic foundation of synchronized detection,” IEEE Trans. Communications, vol. 49, no. 12,

pp. 2115–2123, Dec. 2001.

[16] S. Bhashyam, A. Sabharwal, and B. Aazhang, “Feedback gain in multiple antenna systems,” IEEE Trans. on

Communications, vol. 50, no. 5, pp. 785–798, May 2002.

[17] C. Wen, Y. Wang, and J. Chen, “An adaptive spatio-temporal coding scheme for indoor wireless communication,”

IEEE Journal on Select. Areas. Commun., vol. 21, no. 2, pp. 161–170, Feb. 2003.

[18] D. Samardzija and N. Mandayam, “Pilot-assisted estimation of MIMO fading channel response and achievable data

rates,” IEEE Trans. Signal Processing, vol. 51, no. 11, pp. 2882–2890, Nov. 2003.

[19] A. Lapidoth and S. Shamai, “Fading channels: how perfect need ‘perfect side information’ be?” IEEE Trans.

Information Theory, vol. 48, no. 5, pp. 1118–1134, May 2002.

[20] R. G. Gallager, Information Theory and Reliable Communication. New York, NY: John Wiley and Sons, Inc., 1968.

[21] J. Proakis, Digital Communications, 3rd ed. McGraw Hill, 1995.

August 27, 2005 DRAFT


