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Cooperative Sensor Networks With Misinformed Nodes
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Abstract—The problem of retrieving information by a mobile access
point from a sensor network where sensors cooperatively transmit mes-
sages using a common codebook is considered. It is assumed that there is
a probability that a sensor is misinformed with a wrong message, which
complicates the information retrieval process. The access point uses the
capacity achieving stay-k scheduler that schedules a sensor to transmit for
k consecutive code-letters before switching to a new sensor. The random
coding exponent is derived as a function of k, and it is shown that there
is an optimal k that gives the largest error exponent. The application of
low-definition parity-check (LDPC) codes is considered next. It is shown
in simulations that the optimal k of the stay-k scheduler for LDPC codes
can be inferred from that for the random coding exponent.

Index Terms—Cooperative transmission, error exponent, low-density
parity-check (LDPC) codes, sensor networks.

I. INTRODUCTION

In this correspondence, we consider the problem of extracting in-
formation from a large sensor network in which sensors cooperatively
deliver messages to a mobile access point using a common codebook.
If all collaborating sensors have agreed on a message, each sensor may
transmit some part of the codeword that corresponds to the agreed
message according to some schedule. In such a way, errors caused by
channel noise can be corrected at the access point. Between the access
point and the cooperative sensor network, there is a maximum achiev-
able rateC(0) of information retrieval, below which the detection error
at the access point can be made arbitrarily small by making the code-
word length sufficiently long.

But for large sensor networks in which sensors are distributed geo-
graphically and inexpensive with limited transmission and processing
power, making all sensors agree on a common message is not easy. It
is thus inevitable that some sensors will be mistaken on the message
that is to be delivered cooperatively. Not knowing their mistakes, these
misinformed sensors will transmit signals corresponding to the wrong
codewords. The capacity of the sensor network with misinformed
nodes is the maximum achievable rate C of information retrieval
in the presence of not only channel noise but also sensor mistakes.
Referred to as the capacity of the network with misinformed sensors,
C is expected to be less than C(0).

In characterizing the capacity C or in designing practical coding
schemes that are capable of coping with both channel and sensor errors,
it may seem, at first glance, that sensor errors can be modeled as part of
the channel. This is not the case; the errors produced by misinformed
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sensors depend on the correct message and the codebook used by the
cooperating sensors, which is different from the way errors caused by
channel noise are generated.

We consider the case when sensors cooperate under a predetermined
schedule, i.e., the sensor activation sequence does not adapt to the
previous receptions. At the ith interval, the mobile access point may
choose randomly a sensor, and ask it to transmit the ith letter of the
message codeword. Any sensor asked by the access point for trans-
mission has a probability of � being misinformed. More generally, the
access point may use the so-called stay-k scheduling, asking a sensor
to transmit the next k consecutive letters of the codeword. It is shown
in [1] that the capacity of the sensor network when the sensor error
probability is � is C = (1 � �)C(0), and the stay-k scheduling used
by the access point achieves the capacity as k ! 1.

In this correspondence, we treat the coding aspect of information
retrieval assuming that the codebook used has a rate R below the ca-
pacity. For the fixed code rate R, we are interested in designing the
parameter k of the stay-k scheduling so that the decoder has the fastest
decay rate of error probability. To this end, we first derive the random
coding error exponent as a function of rate R and the scheduling pa-
rameter k. We show next that, for any R < C , the error exponent
approaches to zero as k ! 1, which means that, in contrast to the
capacity achieving strategy, there is an optimal k� that the access point
should ask a randomly chosen sensor to transmit consecutive code-
letters. Finally, we consider the use of an low-density parity-check
(LDPC) code, which has been shown to approach channel capacity
closely, [2] and the references therein. We assume that stay-k sched-
uling is used. The performance of the LDPC code is simulated. It is
shown that the bit error rate (BER) versus k resembles the random
coding exponent versus k. Thus it makes practical sense to use the
random coding exponent, which can be calculated easily, to find a good
k for practical LDPC codes.

The problem considered in this correspondence was originally for-
mulated in [1] where capacities of cooperative sensor network with
misinformed sensors are analyzed under a number of settings. In this
correspondence, we are not interested in capacity achieving schemes.
We focus instead on a more practical issue: when practical coding
schemes such as the LDPC codes are used, what is the best stay-k
strategy that makes detection error probability decay the fastest. The
practical implication is that an optimized scheduling will require a
less number of transmissions from the sensors for a prescribed error
probability.

The idea of cooperation among nodes for the purpose of delivering
information reliably and efficiently has attracted much attention in re-
cent years. See, for example, [3]–[7]. Cooperation can be made at dif-
ferent levels: a collection of nodes collaborating at the signal level,
transmitting as if they are part of an antenna array and beaming a
common message to the receiving node [6]. Nodes can also collaborate
using information theoretic strategies [4], jointly encoding information
and delivering the message at a rate that ensures reliable recovery at
the receiver. Our setup is different from existing ones in several as-
pects. First, we are not considering a source transmitting a sequence of
messages in time. For the sensor network application, we assume that
sensors cooperate to transmit a single message. Thus coding in our case
is done across sensors (instead of over time), and each sensor transmits
only part of the codeword (instead of the entire codeword). Second, we
model explicitly the cooperation error, which has been mostly ignored
in the literature.

This correspondence is organized as follows. We present the system
model and definitions in Section II. The main theoretical results are pre-
sented in in Section III where we derive the random coding exponent
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Fig. 1. Cooperative SEnsor Networks with Mobile Access (C-SENMA).

and show the existence of the optimal stay-k scheduling. The imple-
mentation of LDPC is discussed in Section IV, and simulation results
are presented in Section V.

II. MODEL AND DEFINITIONS

The problem of information retrieval from a Cooperative SEsor Net-
work with a Mobile Access point (C-SENMA) is illustrated in Fig. 1
where infinite number of nodes1 are geographically distributed, and a
mobile access point (fusion center) is capable of scheduling sensors to
transmit. By assuming the mobility of the access point we imply that a
sufficiently large number of sensors can be made to transmit. Some of
the nodes are assumed to be misinformed.

The communication of a uniformly distributed global message W 2
f1; . . . ;Mg from the network to the mobile access point has three
phases: a) orientation, b) information retrieval by scheduling sensors
to transmit, and c) decoding at the mobile access point.

A. Orientation and Sensor Error Model

In the first phase, nodes are informed with the global message W 2
f1; . . . ;Mg. We assume that each node receives the global message
correctly with a certain probability and the reception is independent
of other nodes. Specifically, the state of node i is represented by a
Bernoulli random variable Ui with Ui = 1 indicating that sensor i
has the correct global message and Ui = 0, otherwise. We assume
that Ui’s and W are jointly independent, and Ui’s are independent and
identically distributed (i.i.d.) across sensors with distribution

p(ui) =
�; if ui = 0

1� �; if ui = 1

where � 2 [0; 1] is a constant that controls the reception of the global
message by individual nodes and is referred to as the orientation error
probability of the network.

Let ~Wi be the message obtained at sensor i after the orientation
process. When Ui = 1, the sensor has no error, and ~Wi = W . Other-
wise, we assume that ~Wi is uniformly distributed from 1 to M . Thus

p( ~wi jw; ui) =
�( ~wi; w); if ui = 1
1
M
; if ui = 0

where �(a; b) is equal to 1 if a = b, or 0, otherwise.

B. Scheduling and Channel Model

The mobile access point comes to retrieve information from the field
after the information orientation has been accomplished. In the infor-
mation retrieval phase, only one node is scheduled to transmit at any

1The large network assumption is necessary for a nonzero capacity since, if
the network has only finite nodes, there is a positive probability that all the nodes
are misinformed.

time slot. The scheduling is predetermined in the sense that the se-
quence of transmitting nodes does not depend on the channel outputs.
This scheduling can be programmed before the deployment of the sen-
sors, and it does not require a polling channel from the mobile access
point.

During the information retrieval phase, one node is scheduled to
transmit one symbol at each time slot: at time t, node Kt transmits
the tth code letter of the codeword corresponding to its local message
~WK . The stay-k scheduling schedules a sensor to transmit k consec-

utive code letters before choosing the next sensor.
The uplink channels from each node to the receiver are assumed to

be identical and are modeled by a discrete memoryless channel (DMC)
fX ;Y; q(y j x)g, where X and Y are the input and output alphabets
respectively, and q(y j x) is the transition probability of the channel.

C. Error Probability, Achievable Rate, and Capacity

Let Xt and Yt denote the input and output of the DMC from the
scheduled sensor to the access point at time t. Let n be the number
of slots the mobile access point spends to retrieve information from the
field. The mobile access point decodes the global message based on the
channel outputs Y n and the scheduling Kn. The rate of a codebook is
defined as R log(M)=n, where M is the number of messages in the
codebook and n is the length of a codeword.

The decoded message is denoted by Ŵ 2 f1; . . . ;Mg. An decoding
error occurs if Ŵ 6= W , and the probability of error is defined as
Pe P(Ŵ 6= W ), where W 2 f1; . . . ;Mg is uniformly distributed.

A rateR is called achievable if for any given error � > 0, there exist a
schedulingKn, a codebook with a rate larger thanR�� and probability
of error less that �. The capacity of a system configuration is defined
as the maximum of all achievable rates for the system configuration.

It has been shown in [1] that the capacity of C-SENMA is given by

C = (1� �)C(0):

While this result is intuitive in the sense that roughly a � fraction of
the transmissions are wasted by misinformed sensors, the proof is not
trivial. Using the random coding argument, it is shown that, as k !1,
the stay-k scheduling along with the codebook generated from an op-
timally chosen distribution achieves the capacity[1]. Thus, to optimize
the achievable rate, the optimal k is infinity in the stay-k scheduling
family.

For a fixed code rate and a given codeword length, to minimize the
error probability, the optimal k among the stay-k scheduling family
need not to be infinity. In this work, we derive a random error exponent
for C-SENMA with stay-k scheduling. We make connection between
the optimal k for a random coding exponent and that for LDPC codes
via simulations.

III. RANDOM CODING EXPONENT

In this section, we derive a random coding exponent for C-SENMA
when using the family of stay-k scheduling. We first define the code-
book ensemble of interest. An (n;R) codebook is a matrix inX 2 �n,
each row representing a codeword. For a given k, assume n is a mul-
tiple of k. An (n;R) codebook is said to be generated from distribution
Q(k)(sk) if every k consecutive entries in each row of the codebook,
viewed as a vector, are drawn from distributionQ(k)(sk). When k = 1,
we omit k and use Q(s) as the notation.

Consider the stay-k scheduling. Let be an (n;R) codebook. Let
si( ; w) denote the ith symbol in the wth codeword of codebook .
Let sba( ; w) [sa( ; w); . . . ; sb( ; w)]. Let fr(sk; ; j) be the fre-
quency of symbol vector sk in columns (j�1)k+1 to jk of codebook

, i.e.,

fr(s
k; ; j) =

1

M

M

w=1

1
s ( ;w)=s
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where

M = 2nR;

and the indicator function 1A is equal to 1 if the event A is true, or 0,
otherwise. The probability of output yn given that is the codebook
and w is the intended message is given by

p(yn j ; w) =

n=k

j=1

pj y
jk
(j�1)k+1 j ; w (1)

where

pj y
jk
(j�1)k+1 j ; w

= (1� �)

jk

i=(j�1)k+1

q(yi j si( ; w))

+ �

s 2X

fr(s
0k
; ; j)

k

l=1

q(y(j�1)k+l j s
0
l): (2)

Equation (1) holds because, under the stay-k scheduling, Y jk
(j�1)k+1’s

for different j are independent given the codebook and the message
w. Equation (2) holds because, with probability 1��, the node sched-
uled to transmit in time slots from (j�1)k+1 to jk is well-informed,
hence transmitting the vector sjk(j�1)k+1( ; w) to the DMC q(y j x) in
the k consecutive slots. With probability �, the node is misinformed,
transmitting vector s0k with probability fr(s

0k; ; j).
Notice that pj(y

jk
(j�1)k+1 j ; w) cannot be rewritten as a DMC

with the intended transmission vector being s
jk
(j�1)k+1( ; w) be-

cause pj(y
jk
(j�1)k+1 j ; w) depends on the codebook frequencies

fr(s
0k; ; j) besides the transmission vector sjk(j�1)k+1( ; w). There-

fore, random coding exponent results developed for DMCs cannot be
applied directly here.

We present a random coding exponent in the following proposition
for C-SENMA with the stay-k scheduling. The idea is to introduce a
DMC to which pj(y

jk
(j�1)t+1 j ; w) converges in probability. We then

apply known random coding exponent results on the induced DMC and
bound the difference of the error probabilities for the induced DMC and
the original channel pj(y

jk
(j�1)t+1 j ; w).

Proposition 1: Consider C-SENMA using the stay-k scheduling
and (n; R) codebooks generated from Q(k)(sk). Suppose R > 0. Let
Pe(n;R; k) denote the average probability of error of C-SENMA with
the stay-k scheduling, average over the codebook ensemble. Then the
error exponent is lower bounded by

lim
n!1

�
1

n
log2 Pe(n;R; k) � Ek R;Q

(k)

where the random coding exponent

Ek R;Q
(k)

= max
0���1

�
1

k
log2

y 2Y s 2X

q
(k)
eq y

k j sk;Q(k)

� Q(k)(sk)

1+�

� �R (3)

and

q
(k)
eq y

k j sk;Q(k)

= (1� �)

k

i=1

q(yi j si) + �

s 2X

Q
(k)(s0k)

k

i=1

q(yi j s
0
i):

Proof: See Appendix.

The k to achieve the capacity must be unbounded as shown in [1].
The next proposition, however, indicates that the optimal k for the
random coding exponent is finite.

Proposition 2: For � > 0 and all R > 0,

lim
k!1

max
Q

Ek R;Q
(k) = 0:

Proof: Applying the inequality

q
(k)
eq y

k j sk;Q(k) � �

s 2X

Q
(k)(s0k)

k

i=1

q(yi j s
0
i)

to (3), carrying out the summation over sk , and cancelling the 1
1+�

and
1 + � exponents, we have

max
Q

Ek R;Q
(k)

� max
Q

max
0���1

�
1

k
log2

y 2Y

�

�

s 2X

Q
(k)(s0k)

k

i=1

q(yi j s
0
i) � �R

= max
0���1

�
1

k
log2 � � �R

= �
1

k
log2 �

! 0; as k !1:

Since Ek(R;Q
(k)) � 0, the proof is completed.

Next we consider a special case where the DMC associated with
C-SENMA is a BSC with crossover probability �, i.e.,

q(y j x) =
1� �; if y = x

�; otherwise:
(4)

Fixed the distribution Q(k) to be the uniform distribution over f0; 1gk ,
i.e., Q(k)(sk) = 2�k . Then (3) reduces to

Ek(R) = max
0���1

��
1 + �

k
log2

k

i=0

k

i

�

2k

+(1� �)�k�i(1� �)i � �R : (5)

We will compare (5) with the bit error rate (BER) of LDPC codes in
the simulations section. The LDPC decoding is described in the next
section.

IV. LDPC DECODING

In this section, we describe an encoding/decoding scheme for
C-SENMA with misinformed nodes where the associated DMC is
the BSC with crossover probability � as in (4). We use LDPC codes
and the stay-k scheduling for transmission and information retrieval.
To decode, we use the sum-product algorithm operating on the factor
graph of the system illustrated in Fig. 2.

Fig. 2(a) is the global view of the the factor graph with the channel
outputs yi’s hidden, while Fig. 2(b) depicts the local views of the factor
graph centered at a channel constraint node, a variable node, and a
check node, respectively. Let p(vh)(�) denote a message from a vari-
able node to a channel constraint node: p(vh)(s) is proportional to the
a posteriori probability of the associated variable node being equal to
s; s = 0; 1. Similarly, let p(hv)(�) denote a message from a channel
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Fig. 2. Factor Graph. (a) Global view. (b) Local view.

constraint node to a variable node, p(vc)(�) a message from a variable
node to a check node, p(cv)(�) a message from a check node to a vari-
able node. In Fig. 2(b), all subscript indices are numbered with respect
to the center note (channel constraint node, variable node, or check
node). For example, p(vh)i (�) and p

(hv)
i (�) associated with the channel

constraint node are the messages on the ith edge of the channel con-
straint note, 1 � i � k. The indices are numbered locally with respect
to the center note since it is easier in this way to express the updating
rules for the sum-product algorithm.

The sum-product algorithm iteratively updates the messages p(hv)’s,
p(cv)’s, p(vc)’s, and p(vh)’s in a batch fashion, i.e., updating all mes-
sages in one category (for example, p(hv)) in the factor graph before
updating messages in other categories. In one decoding iteration, all
messages in the factor graph are updated once. Next we will present
the message updating rules.

Message updating rules in the sum-product algorithm are local op-
timal updating rules assuming all incoming messages are independent.
Since the message exchange of the sum-product algorithm between
variable nodes and check nodes for LDPC codes is well understood,
we give the updating rules for p(cv)’s, p(vc)’s, and p(vh)’s directly. For
details, see e.g., [8].

To update p(vc)’s and p(vh)’s, for every variable nodes, calculate

p
(vc)
j (s) = p(hv)(s) �

h6=j

p
(cv)
h (s) (6)

p(vh)(s) =
h

p
(cv)
h (s) (7)

where s = 0; 1.
To update p(cv)’s, for every check node, calculate

p
(cv)
l (s) =

S (s) h6=l

p
(vc)
h (sh) (8)

where Sl(s) fs1; . . . ; sl�1; sl+1; . . . ; sc : sh 2 f0; 1g for h 6= l;
(

h6=l sh+s) mod 2 = 0g, and c is the number of edges of the check
node. An efficient algorithm to calculate (8) has been discussed in [8].

Next we derive the updating rule for p(hv)’s. Let G 2 f0; 1gm�n

denote the LDPC code generator matrix, where the rate of G is R =
m=n. The codebook consists of codewords

fzTG mod 2 : zT 2 f0; 1g1�mg:

Fix k. Let Gj 2 f0; 1gm�k be the submatrix of G consisting of
columns from (j � 1)k + 1 to jk. If Gj is of rank k, then the fre-
quency of symbols sk 2 f0; 1gk in the ((j � 1)k+ 1)th to the (jk)th
columns of is 1=2k , i.e., (zTGi mod 2) is uniformly distributed over
f0; 1g1�k when z

T is uniformly distributed over f0; 1g1�m. Assume
that Gj is of rank k for all j. Therefore, fr(sk; ; j) = 1=2k for all j
and all sk . Hence, (2) reduced to a DMC

pj yjk(j�1)k+1 j ; w = qLDPC yjk(j�1)k+1 j s
jk

(j�1)k+1( ; w)

where

qLDPC(y
k j sk) = (1� �)

k

i=1

q(yi j si) +
�

2k

k

i=1

1

s =0

q(yi j s
0):

qLDPC describes the channel constraint node in the factor graph
Fig. 2(b).

To update p(hv)’s, for every channel constraint node, calculate

p
(hv)
i (s) = p(yk j si = s)

=

s :s =s

qLDPC(y
k j sk)

h6=i

p
(vh)
h (sh) (9)
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Fig. 3. BER versus k: R = 0:5; � = 0:14; � = 0:01, and n = 2048; 4096; 8192. For n = 8192 and k = 10;20;50, no errors were detected during the trials
of 10 messages.

=

s :s =s

�

2k

k

i=1

1

s =0

q(yi j s
0)

+(1� �)

k

i=1

q(yi j si)
h 6=i

p
(vh)
h (sh)

=
�

2k
+ (1� �)q(yi j s)

h6=i

1

s =0

q(yh j s
0)p

(vh)
h (s0) (10)

where (9) uses the assumption that the incoming messages to the
channel constraint node are independent, (10) uses the fact that

1
s=0 q(y j s) = 1, and q(y j s) is given by (4).
To summarize, in each decoding iteration, we have the following:

1) for every channel constraint node, use (10) to update all p(hv)i ’s
associated with the channel constraint node;

2) for every check node, use (8) to update all p(cv)l ’s associated with
the check node;

3) for every variable node, use (6) and (7) to update all p(vc)j ’s and
p(vh), respectively.

To prevent overflow or underflow, the messages should be normalized
after update. For example, normalize p(vh)(s) by p(vh)(0)+ p(vh)(1).

V. SIMULATIONS

In the simulations, we use (3; 6)-regular LDPC codes, where
variable nodes have degree 3, and check nodes have degree 6. The
parity-check matrix is randomly generated and length-4 short circles
are avoided. Each simulation point corresponds 106 messages, each

consisting of nR information bits, where n is the codeword length
and R is the code rate. Only information bits are counted toward the
BER statistics. Each message is decoded up to 200 iterations in the
sum-product algorithm.

Fig. 3 shows BER versus k when R = 0:5; � = 0:14; � = 0:01,
and n = 2048; 4096; 8192. For n = 8192 and k = 10; 20; 50, no er-
rors were detected during the trials of 106 messages. As shown in the
simulation, k around 10 achieves the minimum BER. For comparison,
we plot the random coding exponent (5). Fig. 4 shows �Ek versus k
under the same conditions. In Fig. 4, k slightly less than 10 achieves
the minimum �Ek, hence achieving the maximum random coding ex-
ponent. It is interesting that the two plots have similar shapes, although
the random coding exponent is derived for random codebooks drawn
i.i.d. from Bernoulli( 1

2
) distribution.

Fig. 5 shows BER versus k when R = 0:5; � = 0:03; � = 0:05, and
n = 2048; 4096;8192. In this case, the BER is quite flat from k = 1
to k = 100. Similar shape is also observed in Fig. 6, which plots �Ek

versus k under the same conditions.
The similarity of the BER curve and �Ek indicates that, to search

for a k that gives good performance in LDPC codes, we can start with
a k that gives large random coding exponent, which is much easier to
compute.

VI. CONCLUSION

In this work, we derive a random coding exponent for C-SENMA
with the stay-k scheduling. It is shown that the random coding exponent
converges to zero as k goes to infinity. Hence, in contrast to maximizing
the achievable rate where the optimal k is infinity, the optimal k for the
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Fig. 4. �E versus k : R = 0:5; � = 0:14, and � = 0:01.

random coding exponent is finite. We also propose an LDPC coding
scheme for C-SENMA. From simulation, a k that gives a large random
coding exponent also gives good performance in the LDPC scheme.
Hence, to search for a k that produces low BER in the LDPC scheme,
we can start with a k that produces large random coding exponent,
which is computationally inexpensive.

APPENDIX

PROOF OF PROPOSITION 1

We first prove the k = 1 case, and then extend the result to general k.
For k = 1, rewrite (1) and (2) as

p(yn j ; w) =

n

i=1

pi(yi j ; w) (11)

and

pi(yi j ; w) = (1� �)q(yi j si( ; w))

+ �

s 2X

fr(s
0
; ; i)q(yi j s

0):

We will first introduce a DMC to which pj(yi j ; w) converges in
probability. We will then apply known random coding results on the
DMC and bound the difference of the error probabilities for the DMC
and the original channel pj(yi j ; w). It will be shown that the error
exponent for the original channel is the same as the induced DMC.

Assume that codebook is generated from distribution Q(s). Then
as M goes to infinity, fr(s0; ; i) converges to Q(s0) in probability.

Hence, we introduce an “equivalent” DMC that is independent of the
codebook

qeq(y j s;Q) = (1� �)q(y j s) + �

s 2X

Q(s0)q(y j s0);

where Q is included in the parameter set of qeq to indicate the depen-
dence of qeq on Q. If we use the codebook on the DMC qeq, then the
output probability is

peq(y
n j ; w) =

n

i=1

qeq(yi j si( ; w);Q): (12)

Applying the random coding exponent on DMCs [9, Theorem 5.6.2]
to the equivalent DMC, we have the following lemma:

Lemma 3: Fix Q(s). Consider using (n; R) codebooks generated
from Q(s) and the ML decoder over the equivalent DMC qeq. Let
Pe;eq(n;R) denote the average probability of error, averaged over the
codebook ensemble

Pe;eq(n; R) = p( )
1

M

M

w=1 y 2Y

peq(y
n j ; w)�eq(y

n
; ; w)

where �eq(yn; ; w) = 0 if the ML decoder makes no decoding error
when is the codebook, w is the message, and yn is received; or
�eq(y

n; ; w) = 1, otherwise. Then

Pe;eq(n; R) � 2�nE (R;Q)
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Fig. 5. BER versus k : R = 0:5; � = 0:03; � = 0:05, and n = 2048; 4096; 8192.

where the random coding exponent

Eeq(R;Q) = max
0���1

� log2
y2Y s2X

qeq(y j s;Q) Q(s)

1+�

��R :

The next proposition states that the random coding exponent for
C-SENMA is the same as that for the DMC qeq(y j s;Q).

Proposition 4: Fix Q(s). Consider C-SENMA using the stay-1
scheduling, (n; R) codebooks generated from Q(s), and the ML
decoder for the equivalent DMC qeq as in Lemma 3. Suppose R > 0.
Let Pe(n;R; 1) denote the average probability of error of C-SENMA
with the stay-1 scheduling, average over the codebook ensemble

Pe(n;R; 1) = p( )
1

M

M

w=1 y 2Y

p(yn j ; w)�eq(y
n; ; w):

Then the error exponent is lower bounded by

lim
n!1

�
1

n
log2 Pe(n; R; 1) � Eeq(R;Q): (13)

Proof: We first define a subset of the codebook space such that
the probability of a randomly generated codebook not belonging to the
subset is small. The subset is defined such that, for any codebook in the
subset, (11) is very close to (12). Therefore, the probability of error of

C-SENMA when using a codebook in the subset is close to that of the
equivalent DMC qeq when using the same codebook. In this way, we
prove the error exponent of C-SENMA is equal to that of the equivalent
DMC qeq. The detailed proof is as follows.

Without lose of generality, assume that Q(s) > 0 for 1 � s � A

and Q(s) = 0 for s > A. For � > 0, let C(n)� be a subset of (n;R)
codebooks

C
(n)
� 2 X 2 �n : 8s 2 X ; 8i 2 f1; . . . ; ng;

fr(s; ; i) � Q(s)(1+ �) :

If 2 C
(n)
� , then

p(yn j ; w) =

n

i=1

pi(yi j ; w)

�

n

i=1

(1 + �)qeq(yi j si( ; w);Q)

= (1 + �)npeq(y
n j ; w): (14)

Let r be a random (n;R) codebook generated with distributionQ(s).

The next lemma bounds the probability of r not in C(n)� .

Lemma 5: For all integer r > 1, there exists a K(Q; r) < 1 that
only depends on Q and r, such that for all n, for all 0 < � < 1, and
for all R > 0

Pr r =2 C
(n)
� �

nAK(Q; r)

�2r2rnR
: (15)
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Fig. 6. �E versus k : R = 0:5; � = 0:03, and � = 0:05.

We first apply Lemma 5 to prove the proposition and postpone the
proof of Lemma 5. The average probability of error is bounded as
follows:

Pe(n;R; 1)

� Pr r =2 C
(n)
�

+

2C

p( )
1

M

M

w=1 y 2Y

p(yn j ; w)�eq(y
n; ; w)

�
nAK(Q; r)

�2r2rnR
+ (1 + �)n

� p( )
1

M

M

w=1 y 2Y

peq(y
n j ; w)�eq(y

n; ; w) (16)

=
nAK(Q; r)

�2r2rnR
+ (1 + �)nPe;eq(n;R)

�
nAK(Q; r)

�2r2rnR
+ (1 + �)n2�nE (R;Q) (17)

where (16) is due to (14), and (17) due to Lemma 3.
Let � = 1

n
. The first term of (17) has exponent

lim
n!1

1

n
log2

nAK(Q; r)n2r

2rnR
= �rR:

The second term in (17) has exponent

lim
n!1

1

n
log2 1 +

1

n

n

2�nE (R;Q) = �Eeq(R;Q):

Based on the “largest-exponent-wins” principle ([10, p. 4]), the right-
hand side of (17) has exponent

lim
n!1

1

n
log2 (RHS of (17)) = max(�rR;�Eeq(R;Q)):

Therefore

lim
n!1

�
1

n
log2 Pe(n;R; 1)

� lim
n!1

�
1

n
log2 (RHS of (17))

= min(rR;Eeq(R;Q)):

Because r can be arbitrarily large and R > 0, we select r such that rR
is greater than Eeq(R;Q). Thus, we obtain (13).

Next, we present the proof of Lemma 5, and then the proof of Propo-
sition 4 is complete.

Proof of Lemma 5: Since fr(s; r; i) is the frequency of symbol
s in the ith column of codebook r , whose entries are i.i.d., we have,
from the independence of fr(s; r; i) for different i

Pr r 2 C
(n)
� =

n

i=1

Pr
s2X

ffr(s; r; i) � Q(s)(1+ �)g

= Pr
s2X

ffr(s; r; 1) � Q(s)(1+ �)g

n

= Pr

A

s=1

ffr(s; r; 1) � Q(s)(1+ �)g

n

(18)

where (18) holds because Prffr(s; r; 1) = 0g = 1 for s > A.
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Define

�s
�

A�1
j=0 Q(A)�j

s�1

j=0

Q(A)�j:

We have 0 < �1 < . . . < �A = �. Define

Fs f :
f

Q(s)
� 1 � �s :

Let Bs;i; 1 � i � M; 1 � s � A, be Bernoulli with mean

bs
Q(s)
A

j=sQ(j)
:

And assume thatBs;i’s are independent across i and s. For 1 � s � A,
let

Ms = M 1�

s�1

j=1

Fj

Fs =
1

M

M

i=1

Bs;i:

It can be shown that the frequency vector
(fr(1; r; 1); . . . ; fr(A; r; 1)) has the same joint distri-
bution as (F1; . . . ; FA). Therefore

Pr

A

s=1

ffr(s; r; 1) � Q(s)(1+ �)g

= Pr

A

s=1

fFs � Q(s)(1+ �)g

� Pr

A

s=1

Fs
Q(s)

� 1 � �s (19)

= Pr

A

s=1

fFs 2 Fsg

=

A

s=1

Pr Fs 2 Fs

s�1

j=1

fFj 2 Fjg (20)

where (19) holds because �s � �. For 1 � s � A

Pr Fs 2 Fs

s�1

j=1

fFj 2 Fjg

� min PrfFs 2 Fs jFj = fj ; 1 � j < sg (21)

= min Pr

M 1� f

i=1

Bs;i

M
2 Fs Fj = fj ; 1 � j < s

= min Pr

M 1� f

i=1

Bs;i

M
2 Fs (22)

where (21) holds because of the fact that, if A is an event, B is a set,
and B is a random variable, then

PrfA jB 2 Bg � min
b2B

PrfA jB = bg

(22) holds because Bs;1; Bs;2; . . . are independent of F1; . . . ; Fs�1.

If fj 2 Fj ; 1 � j < s, then

1�

s�1

j=1

fj � 1�

s�1

j=1

Q(j)(1� �j)

� 1� (1� �s�1)

s�1

j=1

Q(j)

� �s�1 +

A

j=s

Q(j) (23)

where (23) holds because �j < �s�1 for j < s. Similarly

1�

s�1

j=1

fj � ��s�1 +

A

j=s

Q(j):

Therefore, if fj 2 Fj ; 1 � j < s, then

M 1�

s�1

j=1

f1 2Ms m :
m

M
�

A

j=s

Q(j) � �s�1 :

Hence

min

1�j<s

Pr

M(1� f )

i=1

Bs;i

M
2 Fs

� min
m2M

Pr

m

i=1

Bs;i

M
2 Fs

= min
m2M

Pr

m

i=1 Bs;i

MQ(s)
� 1 � �s

� min
m2M

Pr

m

i=1 Bs;i

MQ(s)
�

m=M
A

j=sQ(j)

� �s �
m=M
A

j=sQ(j)
� 1

� min
m2M

Pr

m

i=1 Bs;i

MQ(s)
�

m=M
A

j=sQ(j)

� �s �
�s�1
A

j=s Q(j)
(24)

� min
m2M

Pr

m

i=1 Bs;i

MQ(s)
�

m=M
A

j=sQ(j)

� �s �
�s�1
Q(A)

= min
m2M

Pr

m

i=1

(Bs;i � bs) � �1MQ(s)

� min
m2M

1�
E m

i=1(Bs;i � bs)
2r

(�1MQ(s))2r
(25)

where (24) holds because m 2 Ms, and (25) because of Markov’s
Inequality when applied to j m

i=1(Bs;i � bs)j
2r .

Since E[Bs;i � bs] = 0, it can be shown that there exists a
K1(bs; r) < 1 such that for all m

E

m

i=1

(Bs;i � bs)

2r

� K1(bs; r)m
r:

Let K(Q; r) < 1 be a constant that only depends on Q and r such
that

K(Q; r) � max
1�s�A

K1(bs; r)(1 + 1)r A�1
j=0 Q(A)�j

2r

Q(s)2r
:
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Assuming � � 1, we have

min
m2M

1�
E m

i=1(Bs;i � bs)
2r

(�1MQ(s))2r

� min
m2M

1�
K1(bs; r)m

r

(�1MQ(s))2r

� 1�
K1(bs; r)M

r(�s�1 +
A

j=sQ(j))r

(�1MQ(s))2r

� 1�
K(Q;r)

�2rM r
: (26)

Combining (22), (25), and (26), and noticing that probability is non-
negative, we have

Pr Fs 2 Fs

s�1

j=1

fFj 2 Fjg � 1�min 1;
K(Q; r)

�2rM r
:

The above inequality, together with (18) and (20), gives

Pr r 2 C
(n)
� � 1�min 1;

K(Q; r)

�2rM r

nA

� 1� nAmin 1;
K(Q; r)

�2rM r
(27)

� 1�
nAK(Q; r)

�2r2rnR
(28)

where (27) holds because of the fact that, if 0 � x � 1, then

(1� x)n � 1� nx:

From (28), we obtain (15).

With Proposition 4, we are ready to extend the random coding ex-
ponent result to general k and prove Proposition 1. Consider the kth
extended C-SENMA where the associated DMC

q(k)(yk j xk) =

k

i=1

q(yi j xi)

is the kth extended channel of the original DMC q(y j x). The input and
output alphabets are X k and Yk , respectively. Use the (n;R) random
codebooks generated from Q(k)(sk) for the original system to the ex-
tended system: group every k symbols in a codeword and transmit them
in one channel use to the kth extended system. The codebooks, viewed
from the extended system, are (n(k); R(k)) codebooks, where

n(k) = n=k; R(k) = kR:

Let P (k)
e (n(k); R(k); 1) denote the average probability of error of

the kth extended C-SENMA when using the stay-1 scheduling and the
(n(k); R(k)) codebooks. By Proposition 4, the error exponent of the
kth extended C-SENMA with the stay-1 scheduling is bounded by

lim
n !1

�
1

n(k)
log2 P

(k)
e n(k); R(k); 1 � E

(k)
1 R(k); Q(k)

where

E
(k)
1 R(k); Q(k)

= max
0���1

� log2
y 2Y s 2X

q(k)eq yk j sk;Q(k) Q(k)(sk)

1+�

� �R(k) : (29)

Now consider the original C-SENMA when using the stay-k sched-
uling and the (n;R) codebooks. It can be shown that

Pe(n; R; k) = P (k)
e n(k); R(k); 1 :

Therefore

lim
n!1

�
1

n
log2 Pe(n; R; k) = lim

n!1
�
1

n
log2 P

(k)
e

n

k
; kR; 1

�
1

k
E
(k)
1 kR;Q(k) (30)

Ek R;Q(k) :

Substituting (29) into (30) concludes the proof of (3).
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