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Joint Channel and Symbol Estimation by Oblique
Projections

Xiang Yu and Lang Tong, Senior Member, IEEE

Abstract—The problem of simultaneous blind channel and
symbol estimation of a single-input multiple-output (SIMO)
communication channel is considered in this paper. It is shown
that the outer product of the channel vector and the channel input
sequence can be obtained by a linear estimator that has the finite
sample convergence property. Furthermore, this estimator can
be obtained by the use of oblique projections. An order detection
algorithm that avoids the use of subjective thresholding is also
proposed. Applications to multiuser detection are also considered.

Index Terms—Blind channel identification, blind symbol estima-
tion, oblique projection.

I. INTRODUCTION

WE consider the problem of joint estimation of a single-
input multiple-output (SIMO) channel and its input se-

quence. The SIMO model is widely used in data transmission
and diversity receptions, and the problem of joint channel and
symbol estimation has important applications in packet trans-
missions where the use of training symbols may impose sub-
stantial overhead. The majority of existing techniques are iter-
ative algorithms based on the maximization of the likelihood
function [11], which require good initializations. To obtain ac-
curate initializations, it is desirable to use closed-form algo-
rithms (see [11] and references therein) for either channel or
symbol estimation. Among these techniques, the class of deter-
ministic algorithms have the finite sample convergence (FSC)
property, which enables the estimator to obtain parameters per-
fectly with a finite number of noiseless observations. FSC is
highly desirable in short data-length situations. Most existing
closed-form blind identification techniques that have the FSC
property are either channel or symbol estimators. The former
include many (column) subspace techniques such as the sub-
space channel estimation algorithm [8], the cross relation al-
gorithm [18], and the least squares smoothing (LSS) algorithm
[12], [19]. The dual of the column space methods is the row
space techniques for symbol estimations [14] or direct equal-
izer construction [3], [4].
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The only closed-form algorithm capable of estimating
channel and symbol simultaneously1 and having the FSC
property was proposed by Vandaele and Moonen [15]. Unlike
those techniques using linear predictions [10] and the least
squares smoothing [12], [19], where projections are orthogonal,
Vandaele and Moonen used oblique projections that played a
key role in obtaining the channel response and symbols jointly.
This motivates us to explore systematically the idea of using
oblique projection techniques for joint channel and symbol
estimation.

The significance of using oblique projections is twofold.
First, the use of oblique projections leads to rich geometrical
interpretations of many applications, as demonstrated in [1].
Second, oblique projections can be casted within the linear least
squares framework, which enables the application of existing
adaptive techniques.

In this paper, we present a geometrical approach to joint
channel and symbol identification. By decomposing the ob-
servation space into the past, current, and future subspaces
and utilizing the isomorphic relation between the input and
output subspaces, we formulate the problem of joint channel
and symbol estimation as one of estimating the outer product
of the channel vector and the symbol sequence using thelinear
least squares estimator. This estimation can be obtained in
three different ways of using oblique projections. Unlike the
Vandaele-Moonen (VM) algorithms [15] in which the oblique
projection is used followed by solving the channel vector from
a triangular system, our approach obtains the channel-source
outer product directly from oblique projections. This implies
an implementation of the joint channel source estimation based
entirely on recursive least squares. We also present several
extensions, including the use of total least squares projection
and the application to code division multiple access (CDMA)
systems.

The paper is organized as follows. Section II presents a list
of key notations, data model, and a brief description of oblique
projections. In Section III, the idea of intersymbol interference
(ISI) removal is presented, and three projectors are defined to es-
timate the channel and the symbols simultaneously. Extensions
to noisy environment, the problem of order detection, and the
application in multiuser detection problem are also given. Sim-
ulation examples are presented in Section IV, followed by con-
cluding remarks.

1Here we exclude those methods that estimate channel first and then the sym-
bols or vice versa.
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II. PRELIMINARY

A. Notations

Vectors and matrices are boldfaced letters. For most
cases, we use uppercase and lowercase boldfaced let-
ters for matrices and vectors, respectively, with and

denoting the transpose and Hermitian operators.
For a matrix with its singular value decomposition (SVD)

denotes the pseudo-inverse [9] obtained by
, where is the

rank of , and are the nonzero singular values. Calligraphic
letters denote subspaces, and we usefor the -dimensional
complex Euclidean space. For a given matrix ,

is the row (column) space of the matrix. For a given
subspace , denotes the corresponding orthogonal projec-
tion matrix on , and denotes the orthogonal projection of

onto . Similarly, denotes the corresponding orthogonal
projection on —the orthogonal complement of. For two
given subspaces and denotes the corresponding
oblique projection matrix with as the range space and as
the null space, and denotes the oblique projection of
onto along . We use to denote the direct sum of
and and for the intersection of the two spaces. For
a set of vectors denotes the linear
subspace spanned by .

B. Oblique Projection

The idea of oblique projection and its application in signal
processing are well known [1], [9]. For the sake of establishing
notations, we briefly present a few necessary definitions and
results.

The oblique projection of a vector obtains the component of
a vector in a particular direction (the range space) while elimi-
nating the component of the vector along a different direction
(the null space). The basic idea is illustrated in Fig. 1. Con-
sider two matrices and with row spaces and , re-
spectively. Assume that and are disjoint, and let

. For any vector , the oblique projec-
tion of onto along , which is denoted by , is
obtained by the following two steps: i) the orthogonal projec-
tion of onto ; ii) finding the component of in the
direction of while eliminating that in the direction of .
Algebraically, the oblique projection can be computed as [1]

(1)

where is the projection operator (projector) given by

(2)

(3)

The two subspaces and are called therangespace and
thenull space of the projector, and they completely specify the
oblique projection.

From the definition, we can see that the Euclidean space
is decomposed into a direct sum of three different directions,
i.e., ; for , and

Fig. 1. Oblique projection illustration: The oblique projection ofx ontoZ
alongZ is x .

for , i.e., the projector on
along preserves any vector in unchanged and nullifies
vectors in .

The oblique projection can also be viewed as part of the linear
least squares problem. Specifically, given two matricesand

, the oblique projection of a vector can be obtained
from

(4)

where is the least squares solution. Thus, obtaining the
oblique projection of vector is equivalent to solving a linear
least squares problem, which can be implemented by standard
fast recursive techniques.

C. System Model

Consider the following single input outputs FIR system:

(5)

where
scaler complex input sequence;
noiseless vector channel output;
vector channel impulse response.

With additive complex noise , the received signal is .

Our goal is to estimate both the channel
and the symbols from . Define row vectors of input

and noiseless observation as

We now have

(6)
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We will use the block representation of the above
SIMO model by stacking blocks of and denoting

. We then have

(7)

where and are similarly defined as
, and is the filtering matrix

...
... (8)

We make the following two assumptions:

A1) There exists an such that the filtering matrix
has full column rank.

A2) The input sequence has the linear complexity [2]
greater than .

Assumptions A1 and A2 play a critical role in all subspace
methods; they imply an isomorphic relation between the (noise-
less) output and input subspaces. In addition, note that this re-
lation is valid for all . Under A1 and A2, for ,
we have

(9)

This property tells us that any input subspace spanned by no less
than consecutive row vectors can be directly constructed
from the corresponding output subspace. By this property, we
can use such subspace techniques such as projection, intersec-
tion, and union to obtain the estimates of the channel and input
symbols.

III. JOINT CHANNEL AND SYMBOL ESTIMATION BY OBLIQUE

PROJECTION

Given , our goal is to find a linear estimator of the
quantity , where includes all parameters of the channel im-
pulse response. The estimator is a smoother in the sense that for
some , it takes to generate an esti-
mate of . To ensure the finite sample convergence property,
we require to have the following property:

(10)

The existence and the construction of such an estimator, which
is shown next, have not been established previously.

A. Subspace Decomposition

The following development is based on the noiseless obser-
vation, and we defer the discussion of the noisy case to Sec-
tion III-D.

To obtain , we consider the observation matrix that con-
tains the “current” input . As shown in Fig. 2, define the “cur-
rent” data matrix

Fig. 2. Decomposition of the current data matrixC .

By definition, an observation vector can be written as a
linear combination of input vectors involving if and only if it
is a row vector of . The th row of satisfies

(11)

where is the th component in the channel vector, and
are row subvectors from , as illustrated in

Fig. 2. Past and future input matrices and are
also shown in Fig. 2. In the observation

is the interference to from the past and future symbols. From
here, our goal is to remove from the noiseless observation.

Although the row spaces of and are not di-
rectly available from the observations, they are contained in the
spaces spanned by future and past observations. Specifically, as
illustrated in Fig. 3, for a large enough

(12)

(13)

and and can be directly obtained from the observations
according to (9). Thus, the interference is contained in ,
i.e.,

If form the input of the linear estimator, the
input space of the linear estimator has the following decompo-
sition:

(14)

The key idea of our approach is revealed in the above equation.
To obtain the estimate of , we need to project the observation
onto the signal subspace sp along the interference subspace
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Fig. 3. Signal and Interference subspaces.

. Since sp is not available directly, we again need to
construct this subspace from the observations. This can be done
by extending and to include . Specifically, define

sp (15)

sp (16)

This leads to sp , and

(17)

The above equation serves as the basis of a number of techniques
to be presented next. It should be pointed out that van der Veen
et al. first proposed the use of intersection of and to ob-
tain a direct input sequence estimation scheme [4], [14]. The
computation of intersection, especially in the presence of noise,
can be quite involved [5], [14]. In our approach, the direct inter-
section is avoided by the use of oblique projections.

B. Oblique Projection Algorithms

Recall from (11). From the above sub-
space definitions, we have

Therefore, can be obtained from the oblique projection of
onto along . To compute this projection, we

call the following lemma that leads directly to three estimators.
Lemma: Let and be future and past subspaces

defined in (12), (13), (15), (16), and , which is the th row
of the observation matrix . Then

(18)

where can be any one of the following projectors:

(19)

(20)

(21)

Fig. 4. Channel and symbol estimation by projection.

Although the proof of the above lemma can be found in the
Appendix, we present here a geometrical interpretation of the
three projectors described for (18). From (11), define the future
and past interferences as

Here, we ignore the time index for ease of illustrations. Equation
(11) can be rewritten as

(22)

(23)

These quantities are illustrated in Fig. 4, where subspaces are
represented as directed lines or planes, such as sp ,
whereas matrices or data are represented as vectors with specific
lengths, such as .
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From plane , we have

From plane , we have

Hence, for every

which is the same as in (18).
The other two projectors can also be justified from the geo-

metrical illustrations in Fig. 4. For , if we have and
from (22)–(23), then is given by . This is il-
lustrated in the triangle . Note that
this procedure can also be done with and . For , if
we have from (22) and (23), then is given by

. The relation is ready to show in the triangle
.

Projectors and are, in fact, identical with noiseless
observations. Because the row space of the data to be projected

, the following
equations hold:

The use of oblique projection to estimate the input sequence
in packet transmissions has a drawback at the two ends of the
packet. In particular,the output of the proposed linear estimator
is the outer product of and , which is one row of the whole
input matrix . As a result, the first
and the last symbols are not in the estimates. This can be
explained in Fig. 3. It shows that an overall input subspace di-
mension as large as is required in order to construct
the future and the past subspaces. This effectively reduces the
number of estimated symbols to . However, these
symbols can be obtained once the channel is estimated using ei-
ther direct inverse or, perhaps more efficiently, using a decision
feedback approach, and the overall performance is not affected
by the detection of these symbols.

C. Connections With Other Algorithms

The proposed identification scheme uses the row space of the
output data. Thus, it is not surprising to see its relation in several
aspects with other row-space based algorithms.

It is in [15] that the oblique projection is first applied into
SIMO system for blind estimation of channel and symbols, but
in [15], the decomposition of the subspaces and the estimation
scheme are different from the proposed algorithms. The current
data defined in [15] is , which is contained in
the future and past subspaces. After one oblique projection sep-
arating along future and past directions, the
shifting-invariant Toeplitz structure of the input matrix enables
the further cancellation of the remaining ISI in the two direc-
tions by doing direct subtraction.

Fig. 5. Connection with LSS.

The major computational complexity of the proposed algo-
rithms is the QR decomposition. In [15], one QR is used to de-
compose the current data into two parts. In and , the
current data is decomposed into two parts but via two different
ways. Therefore, two QRs are used. To be specific, for a
matrix, one QR decomposition needs
flops (Givens QR, [5]), and one SVD uses

[5] flops. Hence, for the algorithms in this paper and
in [15], the computation complexity is and for
SS-symbol in [14], the complexity is .

From Fig. 5, the difference between the proposed oblique pro-
jection-based algorithm and the least square smoothing (LSS)
[19] algorithm is illustrated. In LSS, the estimated channel is
obtained from the orthogonal projection error of the current data

onto the future and past spaces and . The
projection error is denoted as , where is the error of pro-
jecting onto . Because the row space of the projection
result is spanned by the projection error, we can only takeas
the estimate of the symbol sequence. Hence, LSS has the finite
sample convergence (FSC) property for channel estimation but
not for symbol estimation. In the illustration, we can see the dif-
ference between the two vectors representingand . The
first one is orthogonal to the plane spanned byand (the
plane is called interference plane), whereas the second is skew to
it. When the input is orthogonal to , which is asymp-
totically true for an uncorrelated input sequence, the projection
error will converge to .

D. Effects of Noisy Data: Total Least Squares Oblique
Projection

We have so far assumed the noiseless observations. While
our simulation indicates that the algorithm performs reasonably
well in the presence of noise, it is desirable to modify the for-
mulation, taking explicitly account of the presence of the noise.

The idea is to “remove” noise from the observation samples
that are used in constructing oblique projections. As shown in
(4), the oblique projection can be obtained as the solution of a
least squares problem. Let matricesand be the noisy range
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and null space matrices of the projector, and let .

The (least squares) oblique projection of a noisy vectoronto
along can be viewed as removing the noise fromby

subject to (24)

The oblique projection is then given by

(25)

where and are the optimal vectors from (24).
Because and are themselves noisy, we can modify (24)

to obtain the total least squares oblique projection [7] as follows:

subject to (26)

(27)

(28)

where is the smallest singular value of , and
and are perturbations corresponding toand , respec-
tively.

E. Order Detection

Order detection is always difficult for channel equalization
problem, especially for those multipath channels with small
head and tail taps. Specifically, the intersection betweenand

is ill defined when the channel has small head and/or tail
taps. From Fig. 3, it can be seen that to computefrom the
output matrix, is scaled by the tail of the channel. Similarly,
in is scaled by the head of the channel, andis the only
common part between and . Therefore, for noisy data,
the intersection of and will not give out desired results.
In general, for this kind of channel, good performance can be
obtained by underestimating the order in low SNR region. In
this section, we present a technique based on the property of
oblique projection to estimate the channel order. The order can
be determined with the only assumption of an upper bound on
the true order.

Let us consider the case in a SIMO system for which the
channel order is over or underdetermined. Let the over/underde-
termined order be . The futureandpastdata are represented
in Fig. 6. Given , consider the sum of two projections

(29)

(30)

If , i.e., the order is correctly given, the two projec-
tors in the summation are identical, and the resultingis rank
one. When , the order is overdetermined. Both of the
two terms in (29) are of rank one but have different row and
column spaces. Hence, in general, the projection will have rank
two. When the order is underdetermined, i.e., , since the
preset order is smaller than the true one, the oblique projection
is not well defined due to the overlap of the range and the null

Fig. 6. (a) Correct order. (b) Overdetermined order. (c) Underdetermined
order.

spaces, and the usage of pseudo-inverse in (3) makes the ac-
curate analysis very complex. However, extensive simulations
show that the projection has rank greater than one for randomly
generated input sequences. Similar results also hold for the fol-
lowing projector:

In summary, the order detection can be achieved by checking the
rank of the projection result numerically. Under noisy condition,
the numerical rank checking can be implemented by comparing
the ratio of the second largest singular value to the largest one
for orders from one to the upper bound.

F. Extension to CDMA MIMO Channels

In this subsection, the oblique projection techniques are ap-
plied to multiple-inputs multiple-outputs (MIMO) channels, in
particular, to the multiuser detection (MUD) in code division
multiple access (CDMA) systems. Here, we can see that by
making reasonable assumptions, the ISI of each user can be first
removed by using oblique projection, which makes the detection
in the second step more flexible.

Consider a short-code CDMA system with processing gain of
. For each user- , let and be, respectively,

the spreading code and the propagation channel (including the
effects of the relative time delays among the users). Thus, the
received signal for usercan then be modeled as a single-input

-outputs linear channel with vector impulse responseob-
tained from the convolution of the code with the propagation
channel . In particular, the vector that contains all channel
coefficients for user can be written2 as

Toeplitz

2Here, Toeplitz(x;y) denotes a Toeplitz matrix with first rowy and, except
the first element, the first columnx.
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Let the composite channel length of userbe . By
stacking blocks of data, we have the noiseless observation
at the receiver

Details of this model can be found in [16].
As in most subspace-based techniques in blind multiuser de-

tection, we assume that

(31)

has full column rank and that

(32)

has full row rank. Further, we also assume that all the users have
the same composite channel length,3 i.e., . Using the
same definition of future and past subspaces, we obtain

(33)

where is the projector defined in Lemma 3.2, and is the
symbol sequence from user. Note that after the oblique pro-
jection, all ISI has been completely removed, and the resulting
model is one of the instantaneous mixture of input sequences.

While the channel estimation from (33) can be obtained the
same way as in the subspace algorithm [13], [16], it is interesting
to note that symbol estimation can be obtained directly using
projections in a way similar to the zero-forcing [16] or minimum
output energy (MOE) [6] detector but without explicit estima-
tion of the channels. In fact, a projector predetermined from the
knowledge of all codes can be used directly. Specifically, let
be a vector such that for , and ;
then

for some constant.

IV. SIMULATIONS

A. Simulation Conditions and Performance Measure

In this section, we present several simulation examples on
channel and symbol estimation by the proposed algorithms and
some existing deterministic algorithms.

Algorithms were compared by Monte Carlo simulations. We
used normalized root mean square error (NRMSE) for channel
estimation and root mean square error (RMSE) per symbol for
symbol estimation:

NRMSE (34)

3This is valid for asynchronous system in which the summation of the time
delay and the propagation channel order for each user is smaller than the code
length.

Fig. 7. Channel estimation comparison with randomly generated channels.
Subspace channel estimation algorithm (SS-Channel), projectorE ;E ;E

proposed in this paper, Algorithm I proposed by Vandaele and Moonen
(OB-VM), and the LSS algorithm (LSS).

RMSE (35)

where and were the estimated channel and symbol
sequence from theth run, and was the number of symbols
in the estimated sequence. The additive noises were generated
from i.i.d. zero mean complex Gaussian random sequence, and
the signal-to-noise ratio (SNR) was defined as:

SNR (36)

where was the output number, and is the noise variance.
The input sequence was an i.i.d. equally probable quadrature
phase shift keying (QPSK) complex sequence.

B. Randomly Generated Channel

In the first example, we demonstrate the performances of the
proposed algorithms for well-conditioned channels with known
channel order. The channels were randomly generated for each
run by the following three steps.

1) Generate tap coefficients according to i.i.d. complex
Gaussian distribution.

2) Interpolate the channel according to the channel number
(over-sampling rate).

3) Normalize the channel to .
In this example, , and . The smoothing order
is chosen to be . Note for these settings, the minimum
necessary data length is , which is the con-
dition for to be a “fat” matrix. There
are 500 channels used for each SNR and 100 symbols used for
each Monte Carlo run. The performances curves for channel and
symbol estimation are shown in Figs. 7 and 8. The performance
comparisons with different data length are given in Figs. 9 and
10.
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Fig. 8. Symbol estimation comparison with randomly generated channels.
Subspace intersection symbol estimation algorithm (SS-Symbol), projector
E ;E ;E proposed in this paper, and Algorithm I proposed by Vandaele and
Moonen (OB-VM).

Fig. 9. Channel estimation with different data sample length (E ).

For channel estimation, we observe from Fig. 7 that the three
oblique projection algorithms considered in this paper and the
Algorithm I by Vandaele and Moonen (denoted as OB-VM)
performed similarly as the subspace algorithm [8] and the LSS
algorithm [12]. For symbol estimations, we considered the
oblique projection techniques with the subspace intersection
symbol estimation technique proposed by van der Veen [14].
From Fig. 8, we can see that these symbol estimation algorithms
also performed comparably. It is interesting to point out that
the “SS-symbol” outperformed the other algorithms by 5 dB in
high SNR region. One possible reason is that in oblique pro-
jection-based algorithms, symbols were estimated by forming
the intersection of two subspaces and , whereas in the
“SS-symbol,” symbols were gotten by performing intersection
of all subspaces containing.

The simulation comparison between TLS and LS projections
are also made with projector . The results showed that TLS

Fig. 10. Symbol estimation with different data sample length (E ).

TABLE I
CHANNEL COEFFICIENTS OF AMULTIPATH CHANNEL

projections only provide negligible performance improvement
and, hence, were omitted here. As a result, the LS solution is
more preferable based on the consideration of the computation
complexity and adaptivity of the implementation.

The simulation results with different length of samples are
shown in Figs. 9 and 10. The proposed approaches depend on
the estimates of the row spaces of the input matrix from the
output matrix. Unfortunately, the row space estimation will not
converge to the true basis as the data length goes to infinity,
unless special considerations are given as in [14]. Therefore,
the plots in Figs. 9 and 10 flatten, as expected when data lenth
increases.

C. Multipath Channel

In the second example, we present the simulation results
for multipath channels that have small head and tail taps.
The channel has two outputs and channel order of 5, and the
coefficients are given in Table I. In the simulation, 200 Monte
Carlo runs are used for each SNR, and 100 symbols are used
for each run. The performance curves are plotted in Figs. 11
and 12. As a comparison, we also include, in Figs. 13 and 14,
the curves of several deterministic algorithms using the channel
order given by the minimum description length (MDL) model
selection criterion [17].

From Fig. 11, we can see that the proposed order-detection
scheme together with the corresponding projector considerably
outperformed those algorithms without order detection capa-
bility. It also performed better than J-LSS[12] for SNR less
than 30 dB. In the high SNR region, the curve finally coincided
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Fig. 11. Channel estimation comparison with multipath channels. Projector
E , Algorithm I proposed by Vandaele and Moonen (OB-VM), LSS algorithm
(LSS), subspace channel estimation algorithm (SS-Channel), projectorG

proposed in this paper (OB-G ), and joint-LSS algorithm (J-LSS).

Fig. 12. Symbol estimation comparison with multipath channels. Projector
E , Algorithm I proposed by Vandaele and Moonen (OB-VM), subspace
intersection symbol estimation algorithm (SS-Symbol), and projectorG

proposed in this paper (OB-G ).

with other deterministic methods when the order was correctly
chosen by the algorithm at high SNR. For symbol estimation,
which is shown in Fig. 12, the proposed algorithm also worked
better than the other algorithms without order selection capa-
bility before SNR dB.

The saturation behavior of the the estimator usingat high
SNR was observed. This is due to the bias of the detection al-
gorithm. Specifically, for the given channel, when the order is
underestimated, only several dominant coefficients need to be
estimated. In this case, offers a good estimate, even in a low
SNR region. Starting from 10 dB, the dominant part of NRMSE
for is the omitted coefficients due to the underestimated
order. When the SNR is high, is still using the underesti-
mated channel order. Therefore, the performance of(J-LSS)

Fig. 13. Channel estimation comparison with multipath channels. Projector
G (OB-G ), LSS algorithm with MDL order selection (MDL:LSS), subspace
channel estimation with MDL order selection (MDL:SS-Channel), Algorithm I
proposed by Vandaele and Moonen with MDL order selection (MDL:OB-VM),
subspace channel estimation with true channel order (SS-Channel).

Fig. 14. Symbol estimation comparison with multipath channels. Projector
G (OB-G ), SS-symbol with MDL order selection (MDL:SS-symbol), and
Algorithm I proposed by Vandaele and Moonen with MDL order selection
(MDL:OB-VM) and without order selection (OB-VM).

is worse than the other algorithms around 100 dB. When
gives out the correct channel order, the performace curves con-
verge.

In Figs. 13 and 14, it can be seen that the MDL order selec-
tion resulted in about a 10–dB performance improvement for the
corresponding channel and symbol estimation algorithms in the
low SNR region. However, the performances were still worse
than the proposed oblique projection algorithm with projector

. The peculiar behavior of the MDL-based techniques that
lead to an increase of NRMSE around 30 dB can be explained
by the fact that as a good order detection algorithm, MDL began
to provide correct order detection with high probability, which
worsens the performance of the channel and symbol estimation
(see the curve with true channel order for all SNRs).
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V. CONCLUSION

Joint channel and symbol estimation algorithm using oblique
projections is considered in this paper. The central idea of this
approach is to formulate the problem of channel-symbol estima-
tion as one of least squares smoothing and decompose the obser-
vation space into past, future, and current subspaces. The use of
oblique projection leads to several new estimation algorithms,
all of which can be implemented directly from oblique projec-
tions. One of the main advantages of the approaches presented
in this paper, aside from the simple geometrical formulation of
the problem, is that these algorithms can be easily implemented
using recursive techniques while maintaining the performance
similar to that of subspace techniques.

APPENDIX

Proof of Lemma 3.2:
Proof: The proof follows the steps in the general projector

construction lemmas in [9]. We prove the details of (18) only for
since the proof for the other two cases is similar. First, we

prove that projection matrices and
commute with each other. To verify this, we only need to prove
that for any vector . Since and
sp are disjoint, any vector can be uniquely decom-
posed into four parts ,
where denotes the part of in the orthogonal comple-
ment subspace of sp . Thus, by the definition of

and the property of the oblique projection, we
can show that

Next, we show that is a projector, i.e., it is idempotent
[9]

Finally, we show that the range space and null space of the pro-
jector are and , respectively. For all in the
range space of .
Similarly, . Therefore, the range space of is con-
tained in . On the other hand, any

. Therefore, the range space of is equal to .
For vectors in the null space of , , which im-
plies (note that is the null space of projector

), but , and (the
null space of projector ); thus, . Conversely,

, where and .
Therefore, , implying that is in the
null space of . Therefore, the null space of is equal to

.
We have, therefore, proved that is a projector

with as the range space and as the null space.
Hence, by the property of oblique projection, (18) is proved.
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