3074 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 12, DECEMBER 2001

Joint Channel and Symbol Estimation by Oblique
Projections

Xiang Yu and Lang TongSenior Member, IEEE

Abstract—The problem of simultaneous blind channel and The only closed-form algorithm capable of estimating
symbol estimation of a single-input multiple-output (SIMO) channel and symbol simultaneoushand having the FSC
communication channel is considered in this paper. It is shown property was proposed by Vandaele and Moonen [15]. Unlike

that the outer product of the channel vector and the channel input th techni . i dicti 10 d the least
sequence can be obtained by a linear estimator that has the finite ose techniques using linear predictions [10] an € leas

sample convergence property. Furthermore, this estimator can Sduares smoothing [12], [19], where projections are orthogonal,
be obtained by the use of oblique projections. An order detection Vandaele and Moonen used oblique projections that played a

algorithm that avoids the use of subjective thresholding is also key role in obtaining the channel response and symbols jointly.
proposed. Applications to multiuser detection are also considered. This motivates us to explore systematically the idea of using
Index Terms—Blind channel identification, blind symbol estima-  oblique projection techniques for joint channel and symbol
tion, oblique projection. estimation.
The significance of using oblique projections is twofold.
I. INTRODUCTION First, the use of oblique projgctipns leads to rich geomgtrical
interpretations of many applications, as demonstrated in [1].
W E consider the problem of joint estimation of a singlesecond, oblique projections can be casted within the linear least
input multiple-output (SIMO) channel and its input sesquares framework, which enables the application of existing
guence. The SIMO model is widely used in data transmissi%aptive techniques.
and diversity receptions, and the problem of joint channel and| this paper, we present a geometrical approach to joint
symbol estimation has important applications in packet trangyannel and symbol identification. By decomposing the ob-
missions where the use of training symbols may impose SUsrvation space into the past, current, and future subspaces
stantial overhead. The majority of existing techniques are itg{pnq utilizing the isomorphic relation between the input and
ative algorithms based on the maximization of the Iikelihoogutput subspaces, we formulate the problem of joint channel
function [11], which require good initializations. To obtain acyng symbol estimation as one of estimating the outer product
curate initializations, it is desirable to use closed-form algeyf the channel vector and the symbol sequence usintitbar
rithms (see [11] and references therein) for either channel |gggt squares estimatoiThis estimation can be obtained in
symbol estimation. Among these techniques, the class of det@fee different ways of using oblique projections. Unlike the
ministic algorithms have the finite sample convergence (FSGXndaele-Moonen (VM) algorithms [15] in which the oblique
property, which enables the estimator to obtain parameters pgijection is used followed by solving the channel vector from
fectly with a finite number of noiseless observations. FSC $triangular system, our approach obtains the channel-source
highly desirable in short data-length situations. Most existingter product directly from oblique projections. This implies
closed-form blind identification techniques that have the FS&, implementation of the joint channel source estimation based
property are either channel or symbol estimators. The formgitirely on recursive least squares. We also present several
include many (column) subspace techniques such as the ssitansions, including the use of total least squares projection
space channel estimation algorithm [8], the cross relation alaq the application to code division multiple access (CDMA)
gorithm [18], and the least squares smoothing (LSS) algoriti‘gpstems.
[12], [19]. The dual of the column space methods is the row The paper is organized as follows. Section Il presents a list
space techniques for symbol estimations [14] or direct equgkkey notations, data model, and a brief description of oblique
izer construction [3], [4]. projections. In Section I1I, the idea of intersymbol interference
(ISl) removal is presented, and three projectors are defined to es-
timate the channel and the symbols simultaneously. Extensions
Manuscript received July 24, 2000; revised September 26, 2001. This Wéﬁ( noisy environment, the pmblem of order detection, and the

was supported in part by the National Science Foundation under Contract c@@plication in multiuser detection problem are also given. Sim-

9804019 and the Multidisciplinary University Research Initiative (MURI) undeglation examples are presented in Section 1V, followed by con-
the Office of Naval Research Contract NO0014-00-1-0564. The associate edifﬂﬁding remarks
coordinating the review of this paper and approving it for publication was Prof. ’
Michail K. Tsatsanis.
X. Yu is with Aware, Inc., Bedford, MA 01730 USA (e-mail: xiangyu
@aware.com).
L. Tong is with the School of Electrical and Computer Engineering, Cornell
University, Ithaca, NY 14853 USA (e-mail: ltong@ece.cornell.edu). IHere we exclude those methods that estimate channel first and then the sym-
Publisher Item Identifier S 1053-587X(01)10480-0. bols or vice versa.

1053-587X/01$10.00 © 2001 IEEE



YU AND TONG: JOINT CHANNEL AND SYMBOL ESTIMATION BY OBLIQUE PROJECTIONS 3075

Il. PRELIMINARY

zJ_

A. Notations

Vectors and matrices are boldfaced letters. For mo
cases, we use uppercase and lowercase boldfaced
ters for matrices and vectors, respectively, with)?' and
(-)# denoting the transpose and Hermitian operator
For a matrix with its singular value decomposition (SVD;
A = UXVH At denotes the pseudo-inverse [9] obtained b
AT = Vdiag(1/oy,...,1/0,,0,...,00UH, wherer is the
rank of A, ando; are the nonzero singular values. Calligraphi
letters denote subspaces, and we @fséor the n-dimensional
complex Euclidean space. For a given matix R{A},
(C{A}) is the row (column) space of the matrix. For a givel
subspac&,, Pr denotes the corresponding orthogonal projec
tion matrix onR, andxyx denotes the orthogonal projection of
x ontoR. Similarly, P% denotes the corresponding orthogonz XZrlZn
projection onR+—the orthogonal complement &. For two Fi
given subspace® and A, Ex | denotes the correspondingag
oblique projection matrix witlR as the range space andas

the null space, angtr |+ denotes the oblique projection =f XEj, 2y = 0forx € 2y ® 21, i.e., the projector oix

ontoR along/N. We useR ¢ N to denote the direct sum & ) o
and A andR N A for the intersection of the two spaces. Fo?longZN preserves any vector iiy unchanged and nullifies

X vectors inZy @ Z-+.
a set of vectory , .. ., x,,, sp{x1, ..., X, denotes the linear : L . .
The oblique projection can also be viewed as part of the linear
subspace spanned hy, ..., x,,.

least squares problem. Specifically, given two matriBeand
N, the oblique projectios z,, | z,, of a vectorx can be obtained

ig. 1. Oblique projection illustration: The oblique projectionxobnto Z
longZ . isxzp | 2z,

B. Oblique Projection

from
The idea of oblique projection and its application in signal
processing are well known [1], [9]. For the sake of establishing min ||x — «R — AN||? = xz,, |2y = %R 4)
notations, we briefly present a few necessary definitions and 0
results. where o, is the least squares solution. Thus, obtaining the

The oblique projection of a vector obtains the component ghjique projection of vectox is equivalent to solving a linear

nating the component of the vector along a different directiqgst recursive techniques.

(the null space). The basic idea is illustrated in Fig. 1. Con-

sider two matrice® andN with row spacesZr and Zy, re- C. System Model
spectively. Assume thafr and Zy are disjoint, and le =
Zr @ Zy C C™. For any vectox € C™, the oblique projec-
tion of x onto Zg along Zx, which is denoted by z,, | =, is L
obtained by the following two steps: i) the orthogonal projec- x(t) = Z hs(t = 1), y(t)=x(t)+n(t) (5)
tion xz of x onto Z; ii) finding the component ok = in the 1=0

direction of Zx while eliminating that in the direction oF .
Algebraically, the oblique projection can be computed as [1]

Consider the following single inpu® outputs FIR system:

where
s(t) scaler complex input sequence;
1) x(t) € C” noiseless vector channel output;
h; vector channel impulse response.
whereE;,, | =, is the projection operator (projector) given by With additive complex noisa(t), the received signal ig(t).
Our goal is to estimate both the chankel2 [h?,... h7]”
E —(RF NY RRY RN7\'/R 2 and the symbols(t) from y(¢). Define row vectors of input
zelzy = (RGN R NN o) @ s(t) and noiseless observatisit) as
=P: RY (R"P: R)'R. 3) 5

St

XzZr|2Zny = XEZR [ Zn

s(t),s(t+1),...],
x(®),x(t+1),..]

113

The two subspace8g and Zx are called theangespace and X

thenull space of the projector, and they completely specify the

oblique projection. We now have
From the definition, we can see that the Euclidean spéce I

is decomposed into a direct sum of three different directions, X, = Z hsi_;, Vi=X% +n;. (6)

ie.,C" IZL@ZR@ZN, forx e ZR, XEZR|ZN = x, and 1—0
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We will use the block representation of the abov Xerl Se+1
SIMO model by stackingm blocks of x; and denoting
Xo(t) 2 [xF, ... xF +1]7. We then have :
'-.\ ‘».\.. S}‘l
Xm(t) =7 m(h)SL-I—m(t) C Cgi) — h(;.i h® hg;f
an(t) =Xn (t) + Nrn(t) (7) St+1
: s
whereY,,,(t), N, (¢), and Sp4.,(¢) are similarly defined as .
X, (t), andF,,(h) is the filtering matrix Xt .
h Hp,
hO e hL Hz, P : Sp,
Fon(h) £ - - ®)
hy -+ hg mPx(m+L) Si-L
We make the following two assumptions: Fig. 2. Decomposition of the current data maigx.
Al) There exists am, such that the filtering matri#,,, o ] )
has full column rank. By definition, an observation vectot;; can be written as a
A2) The input sequencgt) has the linear complexity [2] linear combination of input vectors involviryg if and only if it
greater tharL, = 2mg + 2L. is a row vector ofC;. The«th row of C, satisfies
Assumptions Al and A2 play a.critica.I role in all subspape Cgi) = pWs, 4 h}i) Sx (1) +h§§) Sp, (1)
methods; they imply an isomorphic relation between the (noise- L —
less) output and input subspaces. In addition, note that this re- past s feromee
lation is valid for allm > mq. Under Al and A2, forn > my, A g i
we have e =" 2 ps, 4 vi? (12)

whereh(® is the ith component in the channel vector and
Ri{Xm(t)} = R{Sm+1(8)}- ©) h(z), hgz are row subvectors fronfy1(h), as illustrated in

. 2. Past and future input matric8s. (t) and S, (¢) are

This property tells us that any input subspace spanned by no Ie b % (1) 7 (1)
so shown in Fig. 2. In the observatio

thanmg+ L consecutive row vectors can be directly constructe

from the corresponding output subspace. By this property, we ) AL0g h?s
: s : Vet =g 7 (@) Py P, (?)

can use such subspace techniques such as projection, intersec-

tion, and union to obtain the estimates of the channel and ingsithe interference te, from the past and future symbols. From
symbols. here, our goal is to removq ) from the noiseless observation.

Although the row spaces @£, (t) and Sp, (¢) are not di-
[ll. JOINT CHANNEL AND SymBOL ESTIMATION BY OBLIQUE  rectly available from the observations, they are contained in the
PROJECTION spaces spanned by future and past observations. Specifically, as

Given {y(#)}, our goal is to find a linear estimatar of the !lustrated in Fig. 3, for a large enough

guantityhs,, whereh includes all parameters of the channel im- S, ()Y c RIS P4 L

pulse response. The estimator is a smoother in the sense that for {80} {Stm(t +L+m)}

someN, ittakes{y(t— N),...,y(t+ N)} to generate an esti- =R{Xn(t+L+m)}2F  (12)

mate ofhs,. To ensure the finite sample convergence property, RASp, ()} CR{Sr+m(t— 1)}

we requireL to have the following property: = RAX,(t = 1)} A P, (13)
Llx(t = N),....x(t + N)] = hs,. (10) and#, and’; can be directly obtained from the observations

according to (9). Thus, the interference is containeghirp 71,
The existence and the construction of such an estimator, wh|cg1

is shown next, have not been established previously. ‘
v e P @ F, Vi
A. Subspace Decomposition _ _ _
Xt—m; - - -, Xt L+m fOrm the input of the linear estimator, the

The following development is based on the noiseless obser ut space of the linear estimator has the following decompo-

vation, and we defer the discussion of the noisy case to qup
tion I1I-D.
_To obtainhs;, we consider the ob_ser\_/ation m:_:\trix thatcon-  RIX; omp1(t+L+m)} =P & F sp{s:}. (14)
tains the “current” inpus;. As shown in Fig. 2, define the “cur-
rent” data matrix The key idea of our approach is revealed in the above equation.
To obtain the estimate dfs;, we need to project the observation
c, 2 Xit1t+ L) =Frpa()Sopp1(t+ L). onto the signal subspace{sp} along the interference subspace
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Xt Ltm St+L+m
F1
Xe+L St+L
Fa
St+1
Xt c St
St-1
Po
Xt—m S
t—L
P1
St—L-m
Fig. 3. Signal and Interference subspaces.
P, @ Fy. Since sps;, } is not available directly, we again need tc o

£

construct this subspace from the observations. This can be d
by extendingF; and?; to includes,. Specifically, define

Po é PL @ Sp{St} = R{Xm-i-l (t)} (15) H
Fs 2 Fresp{si) = R{Xp1(t+L+m)}. (16)

This leads to sps, } = P> F2, and

R{Xriompi(t+L+m)} =P F, & (PQ ﬂfz) - (17)

The above equation serves as the basis of a number of technic
to be presented next. It should be pointed out that van der Ve
et al.first proposed the use of intersectionBf and?P, to ob-

tain a direct input sequence estimation scheme [4], [14]. T
computation of intersection, especially in the presence of noit
can be quite involved [5], [14]. In our approach, the direct inte.
section is avoided by the use of oblique projections. Fig. 4.

Fi@®Pr - t'r‘?\ A p(l") P

Channel and symbol estimation by projection.
B. Oblique Projection Algorithms
q @) ) @ gi) Although the proof of the above lemma can be found in the
Recalle,” = h's; + v, from (11). From the above sub- pppendix, we present here a geometrical interpretation of the
space definitions, we have three projectors described for (18). From (11), define the future

Ms, e PynFo, v e @A and past interferences as

. . . I (0 A L@ (0 A L®
Therefore(¥'s, can be obtained from the oblique projection of £;7 =hzSx (), p1’ =hpSp (1)

() . L
¢, ontoP>NF> alongPy & F1. To compute this projection, We o re e ignore the time index for ease of illustrations. Equation
call the following lemma that leads directly to three estlmator{,ll) can be rewritten as

Lemma: Let 71, 7> andPy, P, be future and past subspaces ‘ ‘ ‘ ‘ ‘
defined in (12), (13), (15), (16), ang”, which is theith row e = 1D, + p? £ = pl 4 £ (22)
—_———

of the observation matriX ;.1 (¢ + L). Then o
P

Ve _ A0 _ ; i i i i
h( )St =c; E = hs; —XL_H(t—i-L)E (18) :h(z)st_i_fl()_i_pg) =f2()+p§)- (23)
whereE can be any one of the following projectors: £
E, 2 Ep, |7 Ez P, (19) These quantities are illustrated in Fig. 4, where subspaces are

E AR E 20 represented as directed lines or planes, sudha®, sp{s:},
2T BP0 T EP (20)  \yhereas matrices or data are represented as vectors with specific

DN (Ex, 19, +Ep 1 7,) - (21) lengths, such ap$”, p{”, c!?.
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From planeABC D, we have ,CE”

W9s =py’ —p{’ =pYEr, 7,

From planeACF H, we have

ps) =i’ — £’ = cVEp, | Fy -

Hence, for every

Q)

N O)
sy =¢; Ep, |f1Ef2 | P1

@

which is the same as in (18). \ Sesiom

The other two projectors can also be justified from the ge:
metrical illustrations in Fig. 4. FaE,, if we havepgi) andpgi)
from (22)—(23), therh¥s, is given bypS” — pi”. This is il-
lustrated in the triangle((AJ\D : DC = AC — AD. Note that
this procedure can also be done Wféj‘? andffi). For E3, if
we havef™ p{” from (22) and (23), them@s, is given by
et — (£ 4 p{V). The relation is ready to show in the triangle _ _ _
AEF : EF = AF — AE. . The major computatlonall pompIeX|ty of the prpposed algo-

ProjectorsE, and Es are, in fact, identical with noiseless'IthMs is the QR decomposition. In [15], one QR is used to de-

observations. Because the row space of the data to be proje&gPOSe the current data into two partsii E,, andEs, the
R{Xp4i(t + L)} C Fo® PL = Po @ F, the following current data is decomposed into two parts but via two different

ways. Therefore, two QRs are used. To be specific, faran
matrix, one QR decomposition needs’ (m—mn/3) ~ O(n?m)
Xp1(t+LDEx, 1p, = X1 (t+ L) (I—Ep, | £, flops (Givens QR, [5]), and one SVD usgés$mn? — 2n® ~
Xr+lgt+ L;Ef 7 _ Xr+lgt+ L; EI _ EP 7 ; O(n*m) [5] flops. Hence, for the algorithms in this paper and
L+l P | Fo = AL FulPa) - in [15], the computation complexity ©((m + L)2N) and for
H H H 4
The use of oblique projection to estimate the input sequereg-SYMPOl in [14], the complexity I9((m + L)*N).

in packet transmissions has a drawback at the two ends of th&©M Fig. 5, the difference between the proposed oblique pro-
Sptlon—based algorithm and the least square smoothing (LSS)

packet. In particular,the output of the proposed linear estima% ) o . .
is the outer product di ands,, which is one row of the whole 19] algorithm is illustrated. In LSS, the estimated channel is

iNPUt MatriXSarom1 (t+L-+m). As a result, the firste + L obtained from the orthogonal projection error of the current data
and the lastr. + L symbols are not in the estimates. This can b§’a+1 (t_ + L) onf[o ctjhe futlc,;re ?nd EaSt §p_aci§ andP; .fThe
explained in Fig. 3. It shows that an overall input subspace direlection error is denoted s, wheres, is the error of pro-
mension as large &n+2L+1 is required in order to construct/€Ctings: onto, & P,.. Because the row space of the projection

the future and the past subspaces. This effectively reduces fheH!t iS Spanned by the projection error, we can only &kes
number of estimated symbols 86— 2m — 2L. However, these the estimate of the symbol sequence. Hence, LSS has the finite
symbols can be obtained once the channel is estimated using8[lPle convergence (FSC) property for channel estimation but
ther direct inverse or, perhaps more efficiently, using a decisiBRt for symbol estimation. In the |Ilustrat|on,_yve can see the dif-
feedback approach, and the overall performance is not affecEfENce Petween the two vectors represeriibgandhs;. The

FehP ?7\ psi) P

Fig. 5. Connection with LSS.

equations hold:

by the detection of these symbols first one is orthogonal to the plane spannedfyand”P; (the
' planeis called interference plane), whereas the second is skew to
C. Connections With Other Algorithms it. When the inpus; is orthogonal taF; ¢ 7, , which is asymp-

_ o totically true for an uncorrelated input sequence, the projection
The proposed identification scheme uses the row space of H??orét will converge tos; .

output data. Thus, itis not surprising to see its relation in several
aspects with other row-space based algorithms.

It is in [15] that the oblique projection is first applied into
SIMO system for blind estimation of channel and symbols, b
in [15], the decomposition of the subspaces and the estimatioWe have so far assumed the noiseless observations. While
scheme are different from the proposed algorithms. The currentr simulation indicates that the algorithm performs reasonably
data defined in [15] isX (¢t + L — 1), which is contained in well in the presence of noise, it is desirable to modify the for-
the future and past subspaces. After one oblique projection sep#ation, taking explicitly account of the presence of the noise.
aratingX,(t + L — 1) along future and past directions, the The idea is to “remove” noise from the observation samples
shifting-invariant Toeplitz structure of the input matrix enablethat are used in constructing oblique projections. As shown in
the further cancellation of the remaining ISl in the two dired4), the oblique projection can be obtained as the solution of a
tions by doing direct subtraction. least squares problem. Let matrid@sandN be the noisy range

D. Effects of Noisy Data: Total Least Squares Oblique
Etrojection
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and null space matrices of the projector, andAe€ ;{ . ) Fi :
H S,
The (least squares) oblique projection of a noisy vebtonto J F !
R alongN can be viewed as removing the noise frorby Seari s,
F &
min ||Abl|2, subjecttob — Ab = [a, S]A.  (24) St-1
St+1 F; P
The oblique projection is then given by s, :
P,
br|n =R, bnr=/AN (25) | s
& 7
whereca.,, andg, are the optimal vectors from (24). St+1 5
BecauseR andN are themselves noisy, we can modify (24| ; 2
to obtain the total least squares oblique projection [7] as follow 5t Py S
8¢—1
min |[[AbT, AAT]T||r " : P : ©
subject to(b — Ab) = [c, 5](A — AA) (26) : (b)
[a*,/3*] = bAH(AAH - 02I)T (27) Fig. 6. (a) Correct order. (b) Overdetermined order. (c) Underdetermined

brin = (R—AR), byr =/4"(N—-AN) (28) order

whereo is the smallest singular value A", b*]", andAR  spaces, and the usage of pseudo-inverse in (3) makes the ac-
and AN are perturbations correspondingBoandNN, respec- cyrate analysis very complex. However, extensive simulations

tively. show that the projection has rank greater than one for randomly
generated input sequences. Similar results also hold for the fol-
E. Order Detection lowing projector:

Order detection is always difficult for channel equalization A
problem, especially for those multipath channels with small Gt =Egz |p, + Ep |p, —Eg,|p, — Ep, |7,
head and tail taps. Specifically, the intersection betwEeand
P, is ill defined when the channel has small head and/or tail summary, the order detection can be achieved by checking the
taps. From Fig. 3, it can be seen that to compfiefrom the rank of the projection result numerically. Under noisy condition,
output matrix,s; is scaled by the tail of the channel. Similarlythe numerical rank checking can be implemented by comparing
in P, s, is scaled by the head of the channel, ani the only the ratio of the second largest singular value to the largest one
common part betweerf, and P,. Therefore, for noisy data, for orders from one to the upper bound.
the intersection ofF> and P, will not give out desired results.
In general, for this kind of channel, good performance can Ibe Extension to CDMA MIMO Channels
obtained by underestimating the order in low SNR region. In |, his subsection, the oblique projection techniques are ap-
this section, we present a technique based on the propertysfj 1o multiple-inputs multiple-outputs (MIMO) channels, in
oblique projection to estimate the channel order. The order c@fticylar, to the multiuser detection (MUD) in code division
be determined with the only assumption of an upper bound Rilltiple access (CDMA) systems. Here, we can see that by
the true order. making reasonable assumptions, the ISI of each user can be first

Let us consider the case in a SIMO system for which theqyed by using oblique projection, which makes the detection
channel order is over or underdetermined. Let the over/underﬂ@the second step more flexible.

termined order bd.’. Thefuture andpastdata are represented  ~gnsider a short-code CDMA system with processing gain of

in Fig. 6. Givenl’, consider the sum of two projections P. Foreach uset;i = 1,.. ., K, letc; andg; be, respectively,
the spreading code and the propagation channel (including the
G2 Er, | p, Ep, |7, +Ep, |5 Ez, |p, (29) effects of the relative time delays among the users). Thus, the
E, =X, (t+ L) Gy (30) received signal for usercan then be modeled as a single-input

P-outputs linear channel with vector impulse respohs@b-
If I, = I/, i.e., the order is correctly given, the two projecla'ned from the convolution of the code with the propagation

tors in the summation are identical, and the resuli¥jgs rank  channel;. In particular, the vectda; that contains all channel
one. WhenL < I/, the order is overdetermined. Both of theoefficients for usef can be writteh as

two terms in (29) are of rank one but have different row and ) A

column spaces. Hence, in general, the projection will have rank h; = Toeplitz(c;,0)g; = Cig;.

two. When the order is underdetermined, ile> L', since the

Preset order 'S. smaller than the true one, the Ob“que pI‘OJeCtIOBHere, Toeplitgx, y ) denotes a Toeplitz matrix with first row and, except
is not well defined due to the overlap of the range and the ntHk first element, the first colums.
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Randomly generated channel;Channel estimation

Let the composite channel length of ugebe (L; + 1). By 0 . : : : ;

T
L : : —+— 8S-Channel

stackingm blocks of data, we have the noiseless observatic &5~ - . ; ; o OB E
at the receiver ol Sy ‘ _ xg::% |

—&- OB-VM

K i N
an(t) = Z Fm(hi)si,L;-l—m(t)- -or ‘ N ‘ S
=1 : &

Details of this model can be found in [16].
As in most subspace-based techniques in blind multiuser ¢
tection, we assume that

Fun(0) 2 [Fr(l). ... ()] G N

has full column rank and that a0k

S 2 [S1iom®Ts . SkLam®T] (32)

s ; ; ; j ; .
0 10 20 30 40 50 60 70
SNR(dB)

has full row rank. Further, we also assume that all the users have
the same composite channel lengite., L; = L,Vi. Usingthe Fig. 7. Channel estimation comparison with randomly generated channels.

same definition of future and past subspaces, we obtain Subspace channel estimation algorithm (SS-Channel), projétfoE., E,
proposed in this paper, Algorithm | proposed by Vandaele and Moonen

(OB-VM), and the LSS algorithm (LSS).

K
Xprit+LE= Z h;s; ; (33)
=1 A 1 Ni 2
_ _ o _ RMSEZS | ——— " [8" -5, (35)
whereE is the projector defined in Lemma 3.2, asg is the NiplNo £~

symbol sequence from us&rNote that after the oblique pro-

jection, all ISI has been completely removed, and the resultigghere h*) and §§k> were the estimated channel and symbol
model is one of the instantaneous mixture of input sequencegequence from thkth run, andV, was the number of symbols
While the channel estimation from (33) can be obtained th¢ the estimated sequence. The additive noises were generated
same way as inthe subspace algorithm [13], [16], itis interestif@m i.i.d. zero mean complex Gaussian random sequence, and
to note that symbol estimation can be obtained directly usifige signal-to-noise ratio (SNR) was defined as:
projections in a way similar to the zero-forcing [16] or minimum
output energy (MOE) [6] detector but without explicit estima- A 1 L
tion of the channels. In fact, a projector predetermined from the SNR= p—a2E Z
knowledge of all codes can be used directly. Specificallyf let =1
be a vector such thdt L C{C;} for j # i, andf; € C{C;}; whereP was the output number, and is the noise variance.
then The input sequence was an i.i.d. equally probable quadrature
phase shift keying (QPSK) complex sequence.

N2
| (36)

fiHXL+1 (t + L)E = ’YSiJ
B. Randomly Generated Channel

In the first example, we demonstrate the performances of the
proposed algorithms for well-conditioned channels with known
channel order. The channels were randomly generated for each
A. Simulation Conditions and Performance Measure run by the following three steps.

In this section, we present several simulation examples onl) Generatd.+1 tap coefficients accordingtoi.i.d. complex
channel and symbol estimation by the proposed algorithms and ~ Gaussian distribution. _
some existing deterministic algorithms. 2) Interpolate the channel according to the channel number
Algorithms were compared by Monte Carlo simulations. We P (over_—samplmg rate).
used normalized root mean square error (NRMSE) for channel3) Normalize the channel tgh|| = 1.

estimation and root mean square error (RMSE) per symbol figrthis example . = 4, and P = 2. The smoothing ordef
symbol estimation: is chosen to ber = L. Note for these settings, the minimum

necessary data length4s: + 4L + 1 = 33, which is the con-

1 Ne 5 dition for Sz,42n41(t + m + L) to be a “fat” matrix. There
NRMSE = — Z Hh(k) - hH (34) are 500 channels used for each SNR and 100 symbols used for
N[l k=1 each Monte Carlo run. The performances curves for channel and

symbol estimation are shown in Figs. 7 and 8. The performance
3This is valid for asynchronous system in which the summation of the timey 9 P

delay and the propagation channel order for each user is smaller than the cgggnparisons with different data length are given in Figs. 9 and
length.

for some constany.

IV. SIMULATIONS
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Randomly generated channel;Symbol estimation symbol estimation
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Fig. 8. Symbol estimation comparison with randomly generated channels. Fig. 10. Symbol estimation with different data sample lendgb)(
Subspace intersection symbol estimation algorithm (SS-Symbol), projector
Es, E., E; proposed in this paper, and Algorithm | proposed by Vandaele and

Moonen (OB-VM). TABLE |

CHANNEL COEFFICIENTS OF AMULTIPATH CHANNEL

-6 SNR = 40dB

channel estimation
-15 T T T T T T

» » _ Channel-1:real —0.0031 | —0.0109 | +0.1522 | 4-0.3789 | —0.0301 | —0.0032
—20f x R FET PR e o J Channel-1:imaginary | —0.0017 | —0.0025 | +0.0705 | +0.5930 | —0.0348 | —0.0017
Channel-2:real —0.0016 | —0.0263 | +0.4409 | +0.0766 | —0.0042 | —0.0017

Channel-2:imaginary | —0.0047 | —0.0433 | +-0.4736 | +0.2168 | —0.0154 | -0.0044

NRMSE(dB)

projections only provide negligible performance improvement
and, hence, were omitted here. As a result, the LS solution is
more preferable based on the consideration of the computation
complexity and adaptivity of the implementation.

The simulation results with different length of samples are
shown in Figs. 9 and 10. The proposed approaches depend on
: , v the estimates of the row spaces of the input matrix from the

; . ; : ; ; ; output matrix. Unfortunately, the row space estimation will not
° 10 200 800 400 500 goo 7o0 80 converge to the true basis as the data length goes to infinity,

data length
unless special considerations are given as in [14]. Therefore,
Fig. 9. Channel estimation with different data sample lenth)( the plots in Figs. 9 and 10 flatten, as expected when data lenth
increases.

For channel estimation, we observe from Fig. 7 that the three .
oblique projection algorithms considered in this paper and tfe Multipath Channel
Algorithm | by Vandaele and Moonen (denoted as OB-VM) In the second example, we present the simulation results
performed similarly as the subspace algorithm [8] and the L$& multipath channels that have small head and tail taps.
algorithm [12]. For symbol estimations, we considered thEhe channel has two outputs and channel order of 5, and the
oblique projection techniques with the subspace intersectiooefficients are given in Table I. In the simulation, 200 Monte
symbol estimation technique proposed by van der Veen [14garlo runs are used for each SNR, and 100 symbols are used
From Fig. 8, we can see that these symbol estimation algorithfos each run. The performance curves are plotted in Figs. 11
also performed comparably. It is interesting to point out thaind 12. As a comparison, we also include, in Figs. 13 and 14,
the “SS-symbol” outperformed the other algorithms by 5 dB ithe curves of several deterministic algorithms using the channel
high SNR region. One possible reason is that in oblique prorder given by the minimum description length (MDL) model
jection-based algorithms, symbols were estimated by formisglection criterion [17].
the intersection of two subspacgs and 7., whereas in the  From Fig. 11, we can see that the proposed order-detection
“SS-symbol,” symbols were gotten by performing intersectioscheme together with the corresponding projector considerably
of all subspaces containiryg. outperformed those algorithms without order detection capa-
The simulation comparison between TLS and LS projectiofdity. It also performed better than J-LSS[12] for SNR less
are also made with projectd,. The results showed that TLSthan 30 dB. In the high SNR region, the curve finally coincided
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Multipath Channel:Channel Estiamtion Multipath channel: channel estimation
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Fig. 11. Channel estimation comparison with multipath channels. Projecfgf- 13. Channel estimation comparison with multipath channels. Projector
E., Algorithm | proposed by Vandaele and Moonen (OB-VM), LSS algorithn§* 1 (OB-G 1), LSS algorithm with MDL order selection (MDL:LSS), subspace

(LSS), subspace channel estimation algorithm (SS-Channel), proj€stor channel estimation with MDL order selection (MDL:SS-Channel), Algorithm |
proposed in this paper (OB:;), and joint-LSS algorithm (J-LSS). proposed by Vandaele and Moonen with MDL order selection (MDL:OB-VM),

subspace channel estimation with true channel order (SS-Channel).

10 Multipath Channel:Symbol Estiamtion Multipath channel: symbol estimation
T T T T T 10 T T T T L
: © OB G
_—_OBE !
_________________ o : o8 V;\II . : —*= MDL:OB-VM
R § : : - — ~ . PO A : : —= MDL:SS-Symbol
Oy - T e e T I S| SS-Symbol | . LT % ¢ % 1% onum Y I
‘ -» 956 ;

T

o—60—-0—60——6—0—6

=20F

RMSE
RMSE(dB)

=30

_40}

-60 L L L : - _60 i I 1 ' t
0 20 40 80 & 100 120 0 20 40 60 80 100 120
SNR SNR(dB)

Fig. 12. Symbol estimation comparison with multipath channels. Project@ly 14 Symbol estimation comparison with multipath channels. Projector
E,, Algorithm | proposed by Vandaele and Moonen (OB-VM), subspacg;, (0B-G ), SS-symbol with MDL order selection (MDL:SS-symbol), and
intersection symbol estimation algorithm (SS-Symbol), and proje€er  ajgorithm | proposed by Vandaele and Moonen with MDL order selection
proposed in this paper (OB7). (MDL:0B-VM) and without order selection (OB-VM).

with other deterministic methods when the order was correciy worse than the other algorithms around 100 dB. W&gn
chosen by the algorithm at high SNR. For symbol estimatiogives out the correct channel order, the performace curves con-
which is shown in Fig. 12, the proposed algorithm also workeekrge.
better than the other algorithms without order selection capa-n Figs. 13 and 14, it can be seen that the MDL order selec-
bility before SNR= 70 dB. tion resulted in about a 10—dB performance improvement for the
The saturation behavior of the the estimator usthgat high corresponding channel and symbol estimation algorithms in the
SNR was observed. This is due to the bias of the detection liw SNR region. However, the performances were still worse
gorithm. Specifically, for the given channel, when the order than the proposed oblique projection algorithm with projector
underestimated, only several dominant coefficients need to @g. The peculiar behavior of the MDL-based techniques that
estimated. In this cas€; offers a good estimate, even in a lowlead to an increase of NRMSE around 30 dB can be explained
SNR region. Starting from 10 dB, the dominant part of NRMSHBy the fact that as a good order detection algorithm, MDL began
for G is the omitted coefficients due to the underestimated provide correct order detection with high probability, which
order. When the SNR is higlG; is still using the underesti- worsens the performance of the channel and symbol estimation
mated channel order. Therefore, the performandg ofJ-LSS) (see the curve with true channel order for all SNRs).
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V. CONCLUSION

Joint channel and symbol estimation algorithm using oblique[l]
projections is considered in this paper. The central idea of this
approach is to formulate the problem of channel-symbol estima{?]
tion as one of least squares smoothing and decompose the obsgs
vation space into past, future, and current subspaces. The use of
oblique projection leads to several new estimation algorithms,

) . . : : [4]
all of which can be implemented directly from oblique projec-
tions. One of the main advantages of the approaches presented
in this paper, aside from the simple geometrical formulation of [°]
the problem, is that these algorithms can be easily implemente
using recursive techniques while maintaining the performance
similar to that of subspace techniques. (7]

(8]
APPENDIX

Proof of Lemma 3.2: [°]
Proof: The proof follows the steps in the general projector 10]

construction lemmas in [9]. We prove the details of (18) only for
E; since the proof for the other two cases is similar. First, we[ll]
prove that projection matriceA 2 Ez, p, andB 2 Ep, |7
commute with each other. To verify this, we only need to prove
that for any vectox € C", xAB = xBA.. SinceF,P; and
sp{s; } are disjoint, any vectax € C™ can be uniquely decom-
posed into four part& = xz, |, +Xp, | 7, +Xep(s,} TX( )L
wherex .y, denotes the part at in the orthogonal comple-
ment subspace of; & P; @ sp{s. }. Thus, by the definition of
Ez, p,,Ep,| 7 andthe property of the oblique projection, we
can show that

[13]

[14]

(15]
X Er,|p Ep, |7 =Xp(s,} =X Ep, | 7, Ez, 9,

Next, we showthak; = AB isaprojector, i.e., itisidempotent (6]

9]
[17]
(AB)’ = (AB)(BA)

— ABA [18]
— AAB
— AB. [19]

Finally, we show that the range space and null space of the pro-
jector areF, NPy and.Fy ¢ Py, respectively. For atk in the
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range space cAB,xA = x(AB)A = xBA = xAB = x.
Similarly, xB = x. Therefore, the range space AB is con-
tained inF; N P,. On the other hand, any € 7> N Po, x =
xAB. Therefore, the range space AB is equal toF; N Ps.
For vectors in the null space &£B, xAB = 0, which im-
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