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way that each position provides a time-adjusted null constraint to
the other in a linearly constrained beamformer such as the GSC [1].
This multisource structure [13] performs better than MUSIC in both
mobile and immobile cases, as shown in Fig. 3(b). It is one of the
issues reported in [13], among other generalizations [14].
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Connections Between the Least-Squares and the
Subspace Approaches to Blind Channel Estimation

Hanks H. Zeng and Lang Tong

Abstract—In this correspondence, we study the connections between the
least-squares and the subspace approaches to blind channel estimation.
By examining the properties and connections of the so-called multichan-
nel filtering and data selection transforms, we establish a relationship
between the identification equations used in the two approaches. Next, it
is shown that the least-squares and subspace estimators are identical for
the case when there are two subchannels. In general, the two algorithms
are different in their utilization of the noise subspace.

1. INTRODUCTION

The so-called blind channel identification, i.e., identifying a chan-
nel using only the channel output, has attracted increasing research
attention in recent years. Since the publication of [7], several interest-
ing eigenstructure-based approaches [2], [4], [5] have been proposed.
In some simulations, there is a significant performance improvement
over the algorithm proposed in [7] and [8]. Much of the performance
gain can be credited to the exploitation of the special structure of
the so-called filtering transform. Under the identifiability condition
[61-[8], the first two such algorithms are the subspace approach (SS)
proposed by Moulines et al. {31, [5] and the least-squares approach
(LS) proposed in [2]. Slock also derived similar results using linear
prediction techniques [5]. The SS method is based on the following
two key results: i) The signal subspace uniquely determines the
channel impulse response, and ii) the channel vector is orthogonal
to the filtering transform of the noise subspace. The LS approach,
on the other hand, is derived by the exploiting the single-input
multiple-output nature of the identification procedure.

In this correspondence, we investigate connections between the SS
and LS approaches. Assuming that the same data window is used,
the LS and SS approaches can be derived from the same covariance
matrix of the channel outputs. The identification equations and the
uniqueness of their solutions are shown in the same framework. The
approach presented here offers a unified view of the two methods. The
second result of this paper is to show that the two estimators are in fact
identical for the special case involving two subchannels. This case is
of particular importance since it corresponds to the T'/2-fractionally
sampled channel that is popular in communication applications.
Differences betweeii the two approaches are also revealed in our
new derivation.

II. THE MODEL

A. Channel Model and Assumptions

We consider the blind channel identification of a discrete-time
single-input multiple-output model given by

L
x;(t) 2 Zhi(n)wt‘,“
n=0
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TABLE I
MODEL DEFINITION AND AN EXAMPLE, SUPERSCRIPT H AND I DENOTE CONJUGATE TRANSPOSE AND TRANSPOSE,

ResPECTIVELY. (h;) Isa (L +1) X

(2L + 1) Matrix. Has r(h) Is a \[(L+1)

(2L + 1) MATR[X

Notation Definition Example
J——
T M the number of subchannels. 2
h;(z) h,-(z) = h,‘(O) + h;(l)z“l + 4 h,‘(L{)Z_L‘ hl(z) =04+ 0.52_1, hg(z) =0.5+40.3z"1
L L = max;{deg{h:(2)}} 1
h; hy = [hi(0),- -, hi(L)]T € CFF? hy =[0.4,0.6/7, hy = [0.5,0.3)7
h h = (hf,... hi ¥ h={0.4,06 : 0.5,0.3]7
P
%i(t) xi(t) = [2:(t), - wi(t — L)]T (1) = [za(t), 2t ~ )T, i = 1,2
x(t) x(t) = [%]1, -, g™ x(8) = [z1(t),ea(t —1) T 2p(t), et = 1)]T
¥i(t) yi(t) = (), -, w(t ~ L)F yilt) = [w(t), w(t - DT, i=1,2
y(t) y(t) =38, - 35" y() = [ (t), 9t = 1) wa(t), valt - 1))7
w(t) w(t)={ws, -, weor] w(t) = [we, we1, wea]"
K )
04 06 0
Fr(h;) Fr(hs) = Fr(hy) = ( )
, ‘ 0 04 0.6
J3Q) hg)
04 06 0
0 04 06
Ha,p(h) Harn(h) = [FH(hy) - FH(har)}# Harn(h) =
06 03 0
0 05 0.3
yi{t) = xi(t) + ni(t) (1)  channel identification and estimation. For the least-squares approach,

where the {h:(¢)} are impulse responses of subchannels to be
estimated using observations {y;(¢)}. Under the notation given in
Table 1, a vector representation of (1) is given by

X(t) =M, L(h ) (f)ﬂ
y(#) =x(t) +n(t). ®)
We impose the following assumptions in the sequel:

Al) Subchannels do not share common zeros, i.e.,
ﬂfV:[] Z[hi(z)] = 0, where Z[h;(2)] denotes the zeros of
the polynomial %;(z).

A2) The input sequence {w;} is wide-sense stationary with zero
mean and correlation R,, £ E{w(t)w(®)T} > 0.

A3) The noise n(t) is white with zero mean and variance o>,

Note that Al ensures channel identifiability, and it also implies that
Haz, 1.(h) has a full column rank [6].

B. The Multichannel Filtering and Data Selection Transforms

The multichanne] filtering transform (MFT) M., 7.(h) plays the
key role in the development of the subspace approach to blind

on the other hand, it is the so-called data selection transform (DST)
defined below that combines output from different channels to form
identification equations. These two transforms have some similar
properties, such as linearity and symmetry. More important, they are
related by properties of orthogonality and commutativity, which form
the basis of connecting the SS and LS approaches.

Let B ¢ C*/(EFUX! be 2 matrix consisting of vectors b(])

[bm( b(ﬂ L) c o+t
bm b{)
: 3)
BM (1) bl
1) Multichannel Filtering Tmnsform (MFT) [3]:
Fr( b“> Fr(b”)
My n(B) 2 :
Fr ba; Fr(bfy)
b (0) (L)
Fr(bl) 2 “
b (0) (L)
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2) Data Selection Transform (DST) [2]: We have (5), which ap-
pears at the bottom of the page, where B is the complex conjugate
of B, & denotes the Kronecker product,

T = [T, -, T, - Tou—nyu] @ I

and Tij, (i < j)is a M x M matrix whose (¢, j)th entry is 1 and
(4, i)th entry is —1 and is zero elsewhere. I is an [M (M — 1)/2] x
[M(M — 1)/2] identity matrix.

The following properties are direct consequences of the definitions.
Let A ¢ CMUFHXU B ¢ oMUIADXE and o, 3 € C*, and then

Symmetry:

AHHM,L(B) =0 BHHM,L(A) =0 (7)

A"Dy 1(B) =0 = B"Dy L(A)=0. ®)
Orthogonality:

Das, (b)) Hor, (b)) = 0. ©)
Commutativity:

Hot, £.(Par, (D)) = D, . (Har, (). (10)

Remarks:

1) The symmetry property is based on the commutativity of
convolution. Equation (7) was also given in [3] and [5].

2) Orthogonality and commutativity between MFT and DST are
special features of SIMO system, which are key properties used
in this paper.

3) We note that in general, the columns of D, r(h) do not
provide the entire null space. The construction of the orthogonal
complement of the channel matrix is given in [1].

III. A CONNECTION BETWEEN THE LS AND THE SS APPROACHES

Although the SS and LS approaches are motivated differently, they
can be derived in the same framework using properties of MFT
and DST. We examine their connections in both identification and
estimation aspects.

A. Identification Equations

The covariance matrix of received data is given by

R,(h) 2 E{y(t)y” (1)}
= Mt (WRHa, L (h)T +0°L (11
Let the singular value decomposition (SVD) of Ry (h) be
R,(h) = U(h)A(h)U (k)
=U,(h)A. (W)U (h) + c*U,, (W) UZ(h) (12

where U, (h) consists of the singular vectors associated with singular
values greater than o, and U, (h) consists of the singular vectors
associated with singular values equal to o2, Columns of U, (h) and
U, (h) span the “signal” and “noise” subspaces, respectively. The
following theorem gives the identification equations for LS and SS
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Theorem 1: Given R, (h) and its noise eigenmatrix U,, (h), the
following relationships (13)—(15) hold and are as well equivalent.

a) h=ah, VaeC' -{0}e

hi(2)hy(z) = I (2)hi(2), Vi, J. (13)
b bYT{I¢ [R)(h) -’ IIT " h=0s

Dy () Has 1 (h) =0 (14)
¢ h"Huy (U, (h) =0

U,/ (h)Has, 1 (B)0 (15)

where h;(z) and hi(z) are z-transforms of js(n) and hi(n), respec-
tively.

Remark: Equations (14) and (15) in b) and c) provide identifi-
cation equations of the LS and the SS methods, respectively. The
equivalence of a), b), and c) shows that the identification equations of
LS and SS have a unique solution. Differences between the LS and SS
approaches are also evident from (14) and (15). The SS method uses
the entire noise subspace spanned by the columns of U,, (h), whereas
the LS method uses only the noise subspace spanned by the columns
of Dus,z(h). In particular, range {Dxs, .(h)} C range {U, (h)}.
The use of the entire noise subspace is not necessary. Moulines et
al. also gave a variation of the SS approach by using a part of the
noise subspace [3].

Proof: First, we prove the equivalences within a), b), and c).
The equivalence in ¢) is an obvious consequence of the symmetry
property of MFT (7). For a), it is obvious that h = ah =
hi(2)h;(z) = hj(2)hi(2), Vi. j. To show the converse since
Zlhi(2)] € Z[hi(2)]U Z[h;(2)]. Hence, under Al, Z[hi(z)] C
ML (Zh(] U 2 ) = 2[hi(2)] U N, (2lhi(2)])
Z[hi(2)]. Since deg {izi(z)} < L, hi(z) = ahi(z) for an arbitrary
constant «. For b)

T (R — o*D]T"h

Il

=h"T{I® [Har, (W) RLHy, L (W)TIT R (16)
= 0" T{T® [Har, L (W)} T Ry

M@ Har ()" ITh (17
= {b""Dy (M, (W)} TORY)

(8" Das, (Mo, L(B))}. (18)

Since R,, > 0, /T & (R — ¢°D]T7h = 0 if and only if
b7 Dy L (Har, (b)) = 0. By the commutativity property (10),
WDy 1 (Har, 1.(h) = WM 1(Dar, r(h)) = 0. By the sym-
metry property (7), DM,L(h)H?"A/I.L(fl) = 0. Now, we prove that
a) = ¢) = b) = a).
1) a) = ¢ Since U(h)Huy, .(h) = O,
U (hyHu, 1 (h) = a U (h)Hu, 1.(h) = 0.
2) ¢) = b From the orthogonality property,
Dur, (W His (h) = 0. From (15), there is an
A such that Dpgr(h) = U,(h)A. We now have
Dy, (b)Y Hys, L (h) = AYUT (hyH, o (h) = 0.
3) b) = a)y Dus,r(h)?Hu, L(h) = 0 is the matrix form of

therefore,

methods and shows the uniqueness of their identification. hi(2Yhj(2) = hj(z)hi(z), Vi, j. O
B: Bj; By
-B, . By By
Dur,1(B) £ _B, . _B, =TI®B") )
B
-B; -B: ~Biur—1
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B. The LS and SS Estimators

In channel estimation, R,(h) may be replaced by the sample
covariance Ry. There is a number of different implementations of
the LS and SS methods (see e.g., [2] and [3]). In this correspondence,
we shall consider the LS and SS estimators defined by

hrs = arg min B [T(I @ EZ)TH]H (19)
lhj[=1

bss = arg min I:IHH,M,L(ﬁn)HA],L(t]-n)Hfl. (20)
[lhll=1

In the original development [2], the LS estimator was re-
ferred to as a deterministic approach that minimizes the fol-
lowing least-squares cost: min ), [Dar. 1 ([x(6)])h])?. Since
Dyr, (%O Dar, 1 ([x()])F = T(X @ IA{;)TH, it is easy to verify
that this optimization is equivalent to (19). The following theorem
shows that when M = 2, the two estimators are identical.
Theorem 2: When M = 2, hys = hsg with probability one.

Proof: For this case, Dz, 1,(h) = Th*, and T = [Th2] -
Iy = (42 . I"fjl) is an orthogonal matrix. Assumption Al
implies that (see [6]) rank [H2, r,(h)] = 2L + 1. The dimension of
the noise subspace of U, (h) is 1. Therefore, range {U,(h)} =
range { D2 ,(h)} = range {Th*}. When the sample covariance R,
is used, the estimated noise subspace is given by the eigenvector g as-
sociated with the smallest eigenvalue. Note also that with probability
1, g satisfies assumption Al. Hence H» (&) is row-rank deficient
by 1. Again, by the orthogonality property, Dz, L&) H, L(g) = 0.
Therefore

hgs = arg min b H, , (g)H2. 1 (g)"7h
[Ikl|=1
=Dy 1.(g) =Tg". @D

On the other hand, since T is orthogonal

hrs

arg min fl”(TRZT” )h

[Ih]|=1

= arg min(THﬁ)Hf{;(THﬁ)
[Ih[|=1

=(T")™" arg min HF{RZE =Tg".

|Ih|=1

(22)

‘We now have shown that the two estimators are identical. O

We note that the above theorem is not true when 3/ > 2. Such a
case may be the result of using a sampling rate higher than twice the
symbol rate or when multiple receivers are involved. The difference
between the two algorithms is manifested in the ways the noise
subspaces are used. The SS approach uses U, (h), which is the
entire noise subspace. The LS approach uses a special noise subspace
Das, r(h).

IV. CONCLUSION

By exploiting key properties of the multichannel filtering and
the data selection transforms, we gave a unified presentation of
identification and estimation using LS and SS approaches. We also
show that the two estimators are identical for the special case
that there are two subchannels. The differences between the two
approaches are revealed in their utilizations of the noise subspace,
especially when more that two subchannels are involved.
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Alignment Blur in Coherently Averaged Images

D. M. Monro and D. M. Simpson

Abstract— Blurring of coherently averaged images due to imperfect
alignment is studied, and two restoration methods are proposed and
evaluated. It is shown that iterative realignment is more powerful than
post-filtering in reducing blur. The value of averaging and restoration is
illustrated on human subjects in noisy video sequences.

I. INTRODUCTION

In signal and image processing applications, data is often corrupted
by noise, and many techniques have been proposed to reduce its
effect. If multiple aligned versions of the data are available, each
with uncorrelated additive noise, signal averaging will increase the
signal-to-noise-ratio (SNR). This technique is widely applied in signal
processing but is used less often in the enhancement of images,
perhaps because of the additional degrees of freedom arising from the

Manuscript received July 20, 1991; revised December 19, 1993. This work,
and related work on moving image registration and reconstruction, were
supported, in part, by the UK Science and Engineering Research Council,
Grant no. GR/D92370. The associate editor coordinating the review of this
paper and approving it for publication was Prof. Aggelos K. Katsaggelos.

D. M. Monro is with the School of Electrical Engineering, University of
Bath, Claverton Down, Bath, BA2 7AY, England.

D. M. Simpson is with the School of Electrical Engineering, University
of Bath, Claverton Down, Bath, BA2 7AY, England and the Biomedical
Engineering Program, University of Rio de Janeiro, OPPE/UFRIJ, P.O. Box
68510, 21945-970 Rio de Janeiro, Brazil.

Publisher Ttem Identifier S 1053-587X(96)03944-X.

1053-587X/96$05.00 © 1996 IEEE



