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Blind Channel Estimation Using the
Second-Order Statistics: Algorithms
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Abstract—Most second-order moment-based blind channel es-
timators belong to two categories: i) optimal correlation/spectral
fitting techniques and ii) eigenstructure-based techniques. These
two classes of algorithms have complementary advantages and
disadvantages. In this paper, a new optimization criterion re-
ferred to as thejoint optimization with subspace constraints(JOSC)
is proposed to unify the two types of approaches. Based on this
criterion, a new algorithm is developed to combine the strength
of the two classes of blind channel estimators. Among a number
of attractive features, the JOSC algorithm does not require the
accurate detection of the channel order. When compared with
existing eigenstructure-based techniques, the JOSC performs
better, especially when the channel is close to being unidentifiable.
When compared with correlation/spectral fitting schemes, the
JOSC is less affected by the presence of local minima.

I. INTRODUCTION

ESTIMATING transmission channels is important in many
communication and signal processing applications. When

the input of the channel is not available for processing at the
receiver, channel estimation is blind. The class of techniques
that exploits either the cyclostationarity of the signal or the
single-input multiple-output structure of the channel is of
significant current interest. In both cases, it has been shown
that the second-order statistics contain sufficient information
for the identification and estimation of finite impulse response
channels [4], [12], [13].

Many blind channel estimators developed recently belong to
the class of moment-based estimators. Although they are not
always efficient, such algorithms are often simple and provide
good initial estimates. Existing moment-based blind channel
estimators can be further classified into two categories: i)
optimal correlation/spectrum fittingmethods [3], [5], [14], and
ii) eigenstructure-basedalgorithms [2], [6]–[8], [10]–[12]. In
[15] and [16] asymptotic performance analysis of second-order
moment-based blind channel estimators is presented. The anal-
ysis shows that there is a gap in performance between the best
moment-based estimator [5] and some of the eigenstructure-
based algorithms [6], [7]. Such a gap is significant when the
channel is close to unidentifiable.
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Existing moment-based blind channel estimators face some
of the following major difficulties:

1) Nonconvex Optimization: Optimal correlation/spectrum
fitting techniques offer superior performance when the
channel is close to unidentifiable. Unfortunately, such
optimization requires the search of channel parameters
in a high-dimensional parameter space. The existence of
local minima often renders such techniques ineffective.

2) Ill-Conditioning of Channels: Many eigenstructure-
based techniques involve the optimization of some
quadratic criteria from which the estimators can be
obtained in closed form. Unfortunately, when the
channel is close to unidentifiable, the performance
of eigenstructure-based algorithms degrades drastically
(see Section III).

3) Channel Order Determination: This issue has so far not
been addressed adequately. Many eigenstructure-based
algorithms require the accurate detection of the channel
order, which is very difficult for bandlimited channels.

Our goal in this paper is to develop a unified approach to
the second-order moment-based blind channel estimations. To
achieve this goal, we propose a new approach referred to as
the joint optimization with subspace constraints(JOSC), which
enables us to derive most existing moment-based estimators
by specifying several key parameters. Based on this criterion,
a new algorithm is proposed to combine the strength, in
both performance and implementation, of the two classes
of moment-based estimators. The JOSC algorithm has the
following attractive features:

• The JOSC does not require the accurate determination of
the channel order.

• The JOSC is robust with respect to the ill conditioning
of the channel.

• The JOSC involves the search of parameters in a low
dimensional space.

The price paid by the JOSC is the loss of unbiasedness and
some efficiency. When tested for a class of 500 two-ray mul-
tipath channels, the proposed algorithm shows considerable
improvement over existing techniques.

The organization of this paper is as follows. Problem
formulations are given in Section II. In Section III, we discuss
the performance and limitations of the two classes of blind
estimators. Our goal is to motivate the new optimization
criterion that unifies the two approaches. In Section IV, the
JOSC criterion is formulated, and existing blind channel
estimators are classified. We present the new algorithm in
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(a) (b)

Fig. 1. Two equivalent models: (a) Single-input multiple-output model. (b) Single-input single-output model.

Section V. The simulation results are presented in Section
VI, where the class of two-ray multipath channels subject to
random fadings is considered. We conclude in Section VII
by summarizing advantages and disadvantages of the JOSC
estimator.

II. PROBLEM FORMULATION

A. Notations

Notations used in this paper are standard. Upper- and lower-
case bold letters denote matrices and vectors, respectively.
Other notations are listed as follows.

Transpose.
Complex conjugate.
Hermitian.
Expectation operator.
2-norm.
Identity matrix.
Minimum (maximum) singular value
of .
Condition number of .

tr Trace of .
-dimensional complex vector space.

diag Diagonal matrix with elements
on the main diagonal.

B. Models

Second-order moment-based blind channel estimators are
derived from two equivalent models. The discrete-time single-
input multiple-output (SIMO) model [see Fig. 1(a)] is given
by

(1)

where

input sequence;
finite impulse response of theth subchannel;
noise at the th receiver;
received signal from theth receiver.

In the matrix form, we have

(2)

where

(3)

(4)

(5)

(6)

(7)

where and are integers, and the multichannel filtering
transform is defined by

(8)

...
... (9)

Equivalent to the above model is the single-input single-output
model [see Fig. 1(b)]

(10)

where

channel output;
information sequence;
noise;
unknown channel response.

The relation between the two models is given by

(11)

(12)

(13)

for We assume throughout this paper that i) the
input sequence is zero mean and ,
and ii) the noise is zero-mean and white with variance
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C. Problem Formulation

We restrict our discussion in this paper to the class of blind
channel estimators using only the second-order statistics. As
functions of the channel vector, the correlation vector
and thecovariance matrix are defined, respectively, by

(14)

(15)

where

(16)

(17)

Given the estimated correlation vector or the estimated
covariance matrix

(18)

(19)

the problem is to estimate using or

III. B LIND CHANNEL ESTIMATORS

Many moment-based channel estimators belong to two dif-
ferent categories. The first includes those derived by matching
the moments or the power spectra in some optimal way.
The second exploits the eigenstructures of the second-order
moments to obtain closed-form channel identifications. In this
section, we discuss the performance and the limitations of
these two classes of estimators by examining several key
algorithms. Our goal is to motivate the joint optimization
approach proposed in the next section by highlighting the
differences between the two classes of algorithms. Detailds
may be found in [15].

A. Achievable Performance Bound

We begin by posing the following question:What is the best
achievable performance among all consistent moment-based
estimators?To answer this question, one must show that all
moment-based estimators perform no better than one particular
estimator. Given the estimated second-order moment, the
performance of an estimator of the channel vector
can be measured by theasymptotic normalized mean square
error (ANMSE)

ANMSE (20)

Without loss of generality, the channel is assumed to be
normalized, i.e., The answer to the above question
is given by the following theorem whose proof is given in [15].

Theorem 1: Under the assumptions that 1)
converges to a Gaussian random vector with zero mean and

covariance , and 2) Jacobian is
nonsingular for all in some open neighborhood of ,
then for any estimator such that for
all

ANMSE tr

SNR
(21)

where is a constant independent of channel parameters

SNR Moreover, there
exists an optimal such that ANMSE

Remarks:

1) is referred to asasymptotic best consistent(ABC)
estimator [5].

2) The condition that the Jacobian is nonsingular is
not obvious. We shall elaborate on this condition below.
When is nonsingular, however, the performance
of all moment-based algorithms is limited by

It is natural to ask the next question:For which kinds of
channels will the moment-based methods be effective?Specif-
ically, when is singular? The answer to this question
is simple.

Theorem 2: is nonsingular if and only if the subchan-

nels do not share common reciprocal
zeros1.

Proof: See [15].
It is significant that the above condition is different from

the identifiability condition. It is well known that the channel
is identifiable from the second-order moments if and only if
the subchannels do not share common zeros [12]. When the
channel identifiability condition is satisfied, the bound given
in (21) is achievable. On the other hand, one may ask:What
happens when the identifiability condition is not satisfied?The
answer lies in the specification of the neighborhoodof
When the identifiability condition is violated, there is a finite
number of channel vectors that correspond to the same
In this case, one must chooseso that there is an estimator
satisfying Specifying the neighborhood is
nontrivial. It usually requires additional information about the
channel. We shall address this issue later. It is important to note
here that, when compared with the identifiability condition, the
existence of the asymptotic best consistent estimator requires
a much weaker condition: the absence of commonreciprocal
zeros.

B. Correlation/Spectrum Fitting Algorithms

In this section, we present two algorithms derived from op-
timal fitting of moments or power spectra. The first one is the
asymptotic best consistent estimator, presented by Giannakis
and Halford [5], that achieves the performance bound given
by (21). This estimator, however, is not practical. We present
next a suboptimal approach [14] and evaluate its performance.

1A zero z0 of h(z) is a reciprocal zero ifh(1=z0) = 0:
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1) The Asymptotic Best Consistent (ABC) Estimator:
Giannakis and Halford [5] are perhaps the first to derive
the optimal estimator for the blind channel estimation using
second-order moments. The asymptotic best consistent (ABC)
estimator given in [5] is equivalent to

arg (22)

where is computed from (14). can be computed in
closed form. It can be shown [9, pp. 82–85] that the estimator
given above is strongly consistent and the ANMSE achieves
the bound given in (21).

2) Correlation Fitting (CF) Estimator: In practice, it is dif-
ficult to optimize the nonlinear objective function in (22)
where it involves the computation of A suboptimal
approach may be obtained by fitting correlation or the power
spectrum with a fixed weighting (see [14]). For example,
one simple criterion may involve fitting the autocorrelations
directly:

arg (23)

It is again easy to show that is strongly consistent. In
Appendix A, we derive the ANMSE of

ANMSE tr

(24)

Similar to the ABC estimator, the CF estimator is consistent
when is nonsingular.

When compared to the eigenstructure-based algorithms, an
ABC estimator offers better performance [5]. The performance
of the ABC and the CF estimator is determined in part by

Thus, they are robust to the ill conditioning of the
channels. However, they also share important disadvantages.
Since the optimizations in (22) and (23) are both nonlinear,
achieving the global minimum is nontrivial. Such difficulties
are avoided by eigenstructure-based estimators discussed next.

C. Eigenstructure-Based Algorithms

Eigenstructure-based algorithms provide closed-form iden-
tifications of the channel, which has the advantage over the
correlation/spectrum fitting algorithms. The question is how
much loss in performance is associated with the eigenstructure-
based algorithms.

1) The Subspace and Least Squares Estimators:Since the
publication of [13], a number of eigenstructure-based
algorithms have been proposed that have shown promising
performance in various simulation scenarios. The so-called
subspace (SS) algorithm [8] and the least-squares (LS)
algorithm [6] are representatives of such ideas that exploited
the algebraic structure of the channel.

2) The Subspace (SS) Estimator [8]:One form of the SS
estimator is given by a quadratic optimization. From (2)

(25)

Assuming , the singular value decom-
position (SVD) of has the form

(26)

Moulineset al.showed [8] that if the subchannels do not share
common zeros, is uniquely determined by the noise subspace

With the estimated covariance matrix and its correspond-
ing estimated noise eigenmatrix , the SS
estimator is given by

arg

arg (27)

where We note here that
the channel parameter vector is estimated via a quadratic
optimization whose solution can be obtained in closed form
by using the SVD.

3) The Least-Squares (LS) Estimator [6]:Derived in a de-
terministic setting, the LS estimator has the same form as that
of the SS estimator. For , the LS estimator is given by

arg arg (28)

where is a matrix made of blocks of identity matrices [17].
For has the similar quadratic form [17]. Again, the
channel parameter is obtained by a quadratic optimization.

4) Performance:Although and are different, the
LS and the SS estimators are identical for the important case
when and [16]. In such a case, the performance
of the LS and SS estimators is given by [15]

ANMSE
SNR

(29)

where are the singu-
lar values of the , and is a constant decided
by

We make the following observations:

1) The performance of the LS/SS estimators is limited by
In contrast, the performance of the ABC

estimator is limited by
2) When the channel is not identifiable, is singular

[12], and the LS and SS approaches fail. This is not
necessarily true for the optimal correlation/spectra fitting
approaches.

3) Both LS and SS estimators do not require the knowledge
of source covariance as long as On the other
hand, optimal correlation/spectra fitting approaches re-
quire the knowledge of the source statistics and take
advantage of such information.
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IV. THE JOINT OPTIMIZATION WITH

SUBSPACE CONSTRAINTS (JOSC)

In the previous section, we discussed the performance of two
classes of blind channel estimators. Of particular importance
is that correlation/spectra fitting schemes may still work when
the channel is close to unidentifiable as long as the parameter
space is restricted to the neighborhood of the true channel.
The most important disadvantage of this approach is that
the optimization is nonlinear. The search for the channel
parameters in a high-dimensional parameter space often fails
due to the existence of local minima. As shown in the
previous section, the main shortcoming of eigenstructure-based
algorithms is the significant performance deterioration when
the channel is close to being unidentifiable. The question at
this point is: How do we combine the strength of these two
classes of approaches?

The key observation made here is that the two types of
optimization criteria are not the same. Optimizing one criterion
does not automatically optimize the other. Motivated by this
observation, we propose a joint optimization approach that also
unifies most existing moment-based blind channel estimators.

A. The New Criterion

Moment-based algorithms are based on either one of the
following two optimization criteria:

(30)

(31)

Various eigenstructure-based algorithms are derived based
on (30) with different ’s. The class of optimal correla-
tion/spectral fitting schemes is defined by (31) through the
selection of weighting function Our approach rests on the
idea of optimizing (30) and (31)jointly. Specifically, the joint
optimization can be defined by

subject to (32)

where is a given threshold, and

(33)

(34)

where is some weighting matrix, and is a restricted
parameter set.

Remarks:

1) What is the advantage of including ? The inclusion
of enables us to exploit various eigenstructures of
the second-order statistics. Indeed, for many channels,
the eigenstructure-based algorithms are effective. The
constraint involving can be satisfied by restricting
the search of channel parameters in a subspace specified
by the eigenstructures of More discussions will be
given in Section V.

2) How do we select ? The selection of reflects the
degree of emphasis on different aspects of the channel.
When , the optimization of the new

TABLE I
CLASSIFICATION OF MOMENT-BASED ALGORITHMS BY THE JOSC

CRITERION. ABC: ASYMPTOTIC BEST CONSISTENT ESTIMATOR; CSF:
CYCLIC SPECTRAL FITTING ESTIMATOR; CF: CORRELATION FITTING

ESTIMATOR; LS: LEAST-SQUARES ESTIMATOR; SS: SUBSPACE

ESTIMATOR; ESRM: EXTENDED SUBCHANNEL RESPONSEMATCHING

ESTIMATOR; CSLS: CYCLIC SPECTRA LEAST-SQUARES ESTIMATOR

criterion is equivalent to the optimization of
When becomes ineffective,
the optimization of the new criterion is equivalent to
the optimization of , which leads to algorithms
including the asymptotic best consistent estimator. What
is interesting is the case of ,
which enables us to tune the algorithm to different
channels.

3) How do we select ? A key element of the new criterion
is the restriction of the parameter to This comes from
the fact that the asymptotic best consistent estimator is
defined only in the neighborhood of the true channel
parameter (see Theorem 1). The specification of
requires additional knowledge of the true channel. In
Section V, is defined by exploiting the statistical
structures of the channel.

In summary, the new optimization aims to achieve a com-
promise between the performance of the estimation and the
complexities of the implementation. Although optimization of

alone may lead to the best consistent estimator when
the channel is close to unidentifiable, without the constraint
involving and the specification of , it is difficult to
achieve the global minimum in the optimization of

B. Classification of Existing Blind Channel Estimators

The new criterion proposed in this paper provides a frame-
work from which most existing second-order moment-based
estimators can be derived by specifying different and

Table I lists several key algorithms proposed recently.
It is obvious that the selections of and lead to

the ABC, LS, and SS estimators discussed in Section III. The
technique of JOSC is the new algorithm presented in Section
V. We present next the selections of key parameters for several
other algorithms proposed in recent years.

1) Cyclic Spectra Fitting (CSF) Method [14]:The th cyc-
lic spectrum of the output in (10) is the th
Fourier coefficient of the Fourier series expansion of
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with respect to , where

(35)

(36)

It can be shown [12] that the transform of satisfies

(37)

where is the transform of It is easy to verify
that the coefficients of (cyclic correlations) are linear
combinations of the correlation vector in (14), i.e.,

, where is the vector of cyclic correlations,
and is a nonsingular matrix. The cyclic spectra fitting (CSF)
is obtained by the optimization

arg (38)

2) Cyclic Spectra Least-Squares (CSLS) Method [12]:
When , it is easy to verify from (37) that

(39)

Recasting the above equation in the matrix form, we have

(40)

where can be obtained from [12]. The cyclic-
spectra least-squares method is then obtained by

arg

arg (41)

3) Extended Subchannel Response Matching (ESRM)
Method [10]: The extended subchannel response matching
(ESRM) was derived by Schellet al. The cost function used
in the ESRM is the same as that of the LS. The difference
is the specification of the parameter setPerhaps the most
significant contribution of this approach is the exploitation
of the fact that in communication applications, the impulse
response is not arbitrary. The knowledge of the waveform of
the transmitted pulses should be incorporated. Suppose that
the channel impulse response satisfies the model

(42)

where is theknownimpulse response of the shaping filter.
Similar to the definition of , we define as a channel vector

for channel response Therefore, the channel vector
is in the space

span (43)

The advantage of incorporating such information is twofold.
First, it reduces the dimension of the parameter space from

to Second, it considerably improves the perfor-
mance in simulations [10].

V. JOSC ALGORITHMS

In this section, we present a new class of blind channel
estimators based on the JOSC. As mentioned earlier, the
optimization of the new criterion hinges upon three factors:

i) the specification of ;
ii) the quadratic constraint involving by specifying

;
iii) the minimization of .

We present in this section one special implementation of the
JOSC criterion that exploits two subspace structures. The
first subspace that defines is associated with the principal
component structure of the channel. The second subspace is
obtained by the constraint involving Jointly, these two
subspaces form the constraint in the optimization of
Deriving the optimal estimator from the new criterion given in
(32) is nontrivial. Our strategy here is to develop a suboptimal
algorithm that is relatively easy to implement.

A. The Principal Component Analysis of Channel Statistics

The first element of the new algorithm involves specifying
a neighborhood of the channel vector. In general, describing

requires additional knowledge of the channel. Here, we con-
sider an approach that specifiesby exploiting the principal
components of the channel. This is particularly appropriate in
wireless communication.

Wireless channels can be modeled by random parameters.
Consider the case when the channel vectoris zero-mean
with known covariance matrix

(44)

Let the SVD of be

(45)

where is the dimension of channel vectors.
Hence, can be expressed as a linear combination of the
orthogonal basis through the principal component vector

(46)

One advantage of the principal components analysis is that
the best approximation (in the sense of minimum variance)
of by any -dimensional vector is achieved by taking the
linear combination of the first eigenvectors. The variance of
the approximation error is given by When

is small with some less than the dimension of, one
can approximate by the first principal components. The
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important observation at this point is that the dimension of the
channel vector is replaced by, which can be determined off
line as long as is either known or can be estimated. To
illustrate this idea, we consider the case of a multiray fading
channel.

1) The Principal Component Structure of Multi-ray Fading
Channels: A multiray channel model is described by

(47)

where

knownshaping filter, which is a continuous function
lasting (integer is the symbol interval);
independent zero-mean complex Gaussian variables;
timing uncertainty assumed to be uniformly dis-
tributed in ;

and the delays are independent and uniformly distributed
in ( is the maximum delay).

For example, when is the raised-cosine waveform with
roll-off factor 0.25, ,
the maximum length of is 16, or the maximum order of
channels is 7. The corresponding channel vectoris a 16-
dimensional complex vector obtained according to (12). The
covariance matrix of is given by taking expectation over
random variables and

(48)

Computing analytically is difficult and hardly necessary.
Using Monte Carlo techniques, can be estimated as accu-
rately as possible. The principal component analysis shows that
with only five principal components, i.e., , the relative
error is given by

(49)

With such a small approximation error, it is reasonable to
define the parameter subspace span and to
assume that , where and

Therefore, the optimization (32) becomes

subject to (50)

One of the advantages of the principal component analysis
is the reduction of complexity in optimization. In the above
example, instead of performing a search in 16-dimensional
space, the search of five-dimensional space is sufficient with
approximation error knowna priori. As a result of this
restriction in parameter space, the ill effects of local minima
and singularity are reduced.

B. The Quadratic Constraint

We make a heuristic argument to further simplify the
optimization in (50). To incorporate the quadratic constraint,
the JOSC searches the solution in a special subspace that
contains most information about This subspace is obtained
from the eigenstructure of

Ideally, is in the noise subspace of
However, the noise subspace is often not easy to obtain
accurately when is estimated using a finite number of
samples. This is especially the case when the channel is close
to unidentifiable and the smallest several eigenvalues ofare
clustered. In such a case, the eigenvector associated with the
smallest eigenvalue can no longer be used to form a reliable
channel estimator. Indeed, most eigenstructure-based schemes
use only this eigenvector to form the channel estimate, which
is the main cause of performance degradation.

In contrast, the JOSC uses theextended noise subspace
that includes additional eigenvectors of associated with
several of the the smallest eigenvalues. The idea is that
although the estimate of the eigenvector associated with the
smallest eigenvalue may have large perturbation when there
is a small separation between the last several eigenvalues,
the perturbation of thesubspacespanned by the last several
eigenvectors can be made small. Specifically, theextended
noise subspaceis defined by the singular vectors

of

(51)

To satisfy the constraint , the parameter in (51)
satisfies

(52)

Asymptotically, the extended noise subspacecontains the
true channel vector. For example, when channel matrix is
column rank deficient by , there are repeated smallest
singular values, and the true channel vector is in the range of
the corresponding singular vectors. From (52) and ,
the extended noise subspace will include all these singular
vectors. Thus, the true channel is in For finite data case,
the constraint is chosen so that there is a good separation
between and In summary, as a suboptimal
approach to the optimization proposed in Section IV, a JOSC
algorithm optimizes subject to two subspace constraints
derived from the principal component analysis and the noise
subspace of data covariance. The JOSC estimator is given by

(53)

Remarks:

• When noise and input are Gaussian signals, it can be
shown that the extended noise subspace contains the most
information about the channel. See Appendix B.

• Since the JOSC algorithm (53) imposes two subspace
constraints, there is an approximation error that makes
the estimator biased. Although the exact bias cannot be
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Fig. 2. JOSC algorithm.

controlled, it can be reduced by increasing the dimen-
sionality of the two subspaces. A tradeoff needs to be
made in practice between the bias of the estimator and
the complexity of the optimization.

C. Algorithm Implementation

The JOSC is summarized below and illustrated in Fig. 2.
The algorithm involves the specification of channel parameter
subspace by the analysis of the principal components, per-

formed off line, and the on-line channel estimation. In the
following, we discuss some implementation issues.

1) Dimension of : The dimension of depends on the
acceptable approximation error This approximation results
in a biased estimation. There is a tradeoff between the bias
and the high dimensionality of parameter space. The latter
may cause the existence of excessive local minima.

2) Threshold : The parameter is used to tune the al-
gorithm to different types of channels. The choice ofor,
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equivalently, the choice of in (52), depends on the singular
values of When the smallest several singular
values are clustered, the eigenstructure-based schemes do not
perform well. The JOSC uses the extended noise subspace.
On the other hand, if there is a good separation between

and , the eigenstructure-based methods have good
performance. With , the minimization of is
inactive.

3) Channel Order: The JOSC does not require the accurate
detection of the channel order. To obtain the channel subspace
(off line), one needs the maximum length of a class channels.
In channel estimation (on line), the dimensionalityof the
parameter space is determined by the analysis of the quadratic
constraint.

4) Computation Complexity:We briefly derive the compu-
tation complexity for the JOSC algorithm in Fig. 2. Only the
on-line part is considered. If JOSC uses in its quadratic
cost, then Thus, is a vector, and

is a matrix. The first and second steps in
Fig. 2 are matrix multiplication and additions, which require

and flops, respectively. The
third step involves the SVD of a matrix, which has
operations. For each iteration of the gradient search, it needs
the computation of the correlation function , the error
vector and cost, the derivative of , and the gradient
update as

(54)

(55)

(56)

(57)

These four steps require
, and flops, respectively.

Thus, the total flops for one iteration is
flops. In summary, suppose the JOSC needsiterations, the
overall computation load of the JOSC is then given by

(58)

For the SS and the LS methods, a SVD of is used
to determine the channel order. The computation of this SVD
is the main load for the LS/SS methods, and its complexity
is order

VI. SIMULATION RESULTS

A. Performance Measure

We evaluated the performance of the JOSC algorithm by
Monte Carlo simulation using two examples. For indepen-
dent trials, the normalized root mean square error (NRMSE)
was defined by

NRMSE2 (59)

where was the estimated channel from theth trial. The
signal-to-noise ratio (SNR) was defined and given by

SNR (60)

where was the noise variance.

B. Effects of Channel Condition Number

The performance of the JOSC and the LS/SS estimators was
compared for the class of two-ray multipath channels

(61)

where was the continuous-time raised-cosine function
with roll-off factor 0.1 and finite support of (
was the symbol interval), and The corresponding
channel vector was obtained from (12). In order to reduce
the effect of approximation, we chose a small
Accordingly, was spanned by the 12 vectors obtained
from the principal components analysis. With fixed strength

and varying delay , a set of channels was
used to evaluate the performance. The input signal was an
i.i.d. sequence of

The JOSC estimator assumes only the knowledge of the
maximumchannel order. The LS estimator, on the other hand,
requires an accurate detection of the actual channel order. In
this simulation, we assume that the actual channel order is
known to the LS estimator (the actual performance of the
LS/SS estimator is worse than the one shown in this example).

Fig. 3 shows the comparison results. The JOSC algorithm
generally performs better than the LS method. The peak of
NRMSE at is caused by the violation of the
identifiability condition. Fig. 4 shows the condition number of
the channel matrix It is evident that the performance of
the LS estimator correlates strongly with The JOSC
estimator shows considerable improvement near
The smaller peak of NRMSE is due to the fact that the
restriction of the channel parameter space may not always be
sufficient to exclude multiple solutions.

2 The inherent ambiguity was removed before the computation of NRMSE.
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TABLE II
EFFECTS OF THETHRESHOLD �: SNR = 25 dB, Ns = 100; Nm = 50

Fig. 3. Two-ray channels: SNR= 35 dB,Ns = 1000;Nm = 50:

Fig. 4. Two-ray channels: condition numbers of channel matrices.

C. Effects of the Threshold

An important parameter in the JOSC algorithm is the
threshold , which determines the subspace for the correlation
fitting. When is small, the dimension of the extended noise
subspace is reduced. The correlation fitting search is more
restricted. Thus, the eigenstructure-based cost is more
effective in the joint optimization. In implementation, the
choice of is according to the singular value distribution as
discussed in the previous section.

In this simulation, we study the effects of The test
channel is two ray with delays The transmitted
signal is 8-PSK, SNR dB, and Fig. 5 shows
the singular value distribution and thresholds for a Monte
Carlo trial. We choose as 1, 3, and 10 times The
corresponding dimensionsare 1, 2, and 3, respectively. Table

Fig. 5. Singular values and thresholds.

II shows the NRMSE results for 50 Monte Carlo trials. It
appears that is the best. This is consistent
with the observation (Fig. 5) that the last two singular values
are clustered. For LS, ESRM, and JOSC methods,
one singular vector is used to determine the channel; thus,
they have large errors.

D. Performance of A Class Multipath Channels

In this experiment, we examined the performance of the
JOSC for the channel model given by (47). Five vectors from
the principal components analysis were used to construct the

with relative error In the simulation, 500
randomly generated channels were tested. The performance
comparison was made against the LS/SS algorithm [6].

The cumulative percentage of channels versus NRMSE are
shown in Figs. 6–8. For most channels, the JOSC algorithm
performs better than the LS method. Increasing the number
of symbols from 100 to 500, the performance of the JOSC
improves as shown in Fig. 9, whereas the LS method does not
show visible improvement.

VII. CONCLUSION

In this paper, we studied the two classes of existing moment-
based blind channel estimation algorithms. A new optimization
criterion, referred to as the joint optimization with subspace
constraints (JOSC), was established to form a common frame-
work from which existing algorithms can be derived. The
JOSC algorithm aims to combine the strength of the two
types of approaches. Through correlation fitting, the JOSC
has better performance than the eigenstructure-based methods,
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Fig. 6. 500 channels: SNR= 25 dB,Ns = 100; Nm = 50:

Fig. 7. 500 channels: SNR= 25 dB,Ns = 200;Nm = 50:

especially when the channel is ill conditioned. By exploiting
both the statistical and algebraic structure of the channel, the
JOSC searches the channel vector in the subspace containing
the most information about the channel, which reduces the
ill effects of the local minima. By selecting parameter, the
JOSC can be tuned to different channels. One disadvantage
of the JOSC is the biasedness of the estimator. Although
the simulations demonstrate the superior performance of the
JOSC, the performance analysis of this algorithm needs to be
investigated in the future.

APPENDIX A
ANMSE FOR CORRELATION FITTING (CF) ESTIMATOR

Consider a cost function of and :

(62)

The CF estimator is given by

(63)

Fig. 8. 500 channels: SNR= 25 dB,Ns = 500;Nm = 50:

Fig. 9. Performance of the JOSC for 500 channels: SNR= 25 dB,
Ns = 100;200;500;Nm = 50:

Under certain mild conditions [9, Th. 3.16], the asymptotic
normalized covariance of is given by

cov

(64)

where is the asymptotic normalized covariance of
is the Jacobian of with respect to , and

Now, we compute Jacobian Note that the nonlinear
cost function satisfies the regularity conditions [9,
Lemma 3.2], and Jacobian is given by

(65)

Since

(66)
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where is the Jacobian of , and thus

(67)

(68)

Substituting the above into (65) and (64), we have

ANMSE cov

(69)

Hence, we complete the proof of (24).

APPENDIX B
PROPERTIES OF THEEXTENDED NOISE SUBSPACE

We show that the extended noise subspace contains the most
information about the channel under Gaussian assumption.
Specifically, assume that the noise is independent Gaussian and
that the input signals are jointly independent Gaussian and
independent of the noise. To study the information property of
the extended noise subspace, let us consider the SVD of

(70)

Note that ’s eigenvectors of can also be
represented by the orthogonal basis , i.e.,

(71)

where is the projection coefficient. Observe that
not all ’s carry the same amount of information about
One can argue, by evaluating the variance of, that
carries more information than when According to
the asymptotic analysis in [1]

var var

var cov (72)

(73)

(74)

where ’s are eigenvalues. Note that var decreases as
increases. This implies that the extended noise subspace
defined in (51) contains the most information about the

channel.
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