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Abstract—The problem of opportunistic access of parallel chan-
nels occupied by primary users is considered. Under a continuous-
time Markov chain modeling of the channel occupancy by the pri-
mary users, a slotted transmission protocol for secondary users
using a periodic sensing strategy with optimal dynamic access is
proposed. To maximize channel utilization while limiting interfer-
ence to primary users, a framework of constrained Markov deci-
sion processes is presented, and the optimal access policy is derived
via a linear program. Simulations are used for performance evalu-
ation. It is demonstrated that periodic sensing yields negligible loss
of throughput when the constraint on interference is tight.

Index Terms—Constrained Markov decision processes, dynamic
spectrum access, resource allocation.

I. INTRODUCTION

OPPORTUNISTIC spectrum access (OSA), as part of the
hierarchical dynamic spectrum access paradigm [1], al-

lows a secondary user to access channels when primary users
are not transmitting. To design the optimal strategy for the sec-
ondary access, two conflicting objectives arise: on the one hand,
the spectrum utilization is to be optimized by exploiting unused
network resources: time, frequency, and codes. On the other
hand, opportunistic access of a secondary user must not affect
the primary users’ communications. Specifically, the level of in-
terference caused by the secondary users needs to be kept below
a prescribed tolerance level. Thus, there are tradeoffs between
being aggressive and being polite, between achieving spectrum
efficiency and providing a quality-of-service guarantee.
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The first step in the design of optimal OSA is the modeling
of the dynamic behavior of the primary users, which depends
on the specific application. We assume a simple two-state
Markovian model in this paper for primary users on each
channel. Coupled with the proposed periodic sensing strategy,
this model allows us to formulate and solve the optimal OSA
problem practically with reasonable computation cost. Such
a model is not always justified, of course, but experimental
studies on the IEEE 802.11 Wireless LAN (WLAN) support
a semi-Markovian model for various traffic patterns (ftp, http,
and VoIP) [4], and the Markovian model can be a reasonable
approximation in some if not in all traffic regimes. The benefit
of such a model is a simple and practical access strategy that
satisfies prescribed interference constraints.

The next step is optimizing the access protocol. To seize
transmission opportunities left by the primary users and limit
the interference, a secondary user needs to sense before trans-
mitting [5], and it needs to decide on which channel to sense
and which channel to transmit. Thus, the crux of OSA is to
optimize the access policy by exploiting traffic dynamics and
sensing history.

A. Related Work and Contributions

There are several recent surveys on opportunistic spectrum
access (see, e.g., [1], [2], and a recent collection of papers in [3]).
We highlight here some related hierarchical access schemes in
the taxonomy of dynamic spectrum access [1], [8] and summa-
rize the main contributions of this work.

A substantial amount of work exists in exploiting spectrum
opportunities in the spatial domain, where a secondary user
transmits at locations where the primary users are not affected.
(See [1] and references therein.) We focus in this paper on
the utilization of temporal white space. The framework used
here arises from [6] and [7], where a Markovian traffic model
is first introduced and optimal sensing and access strategies
developed. In that work, a secondary user senses only some of
the available channels, thus the overall state of the network is
partially observable. Assuming that both primary and secondary
users have the same transmission slot structure, the authors of
[7] derive the optimal and suboptimal spectrum sensing and
access strategies under the formulation of finite-horizon par-
tially observable Markov decision processes (POMDPs). The
slotted structure makes the problem of imposing constraints on
interference trivial unless sensing is unreliable, in which case
the authors of [9] are able to show a separation principle that
decouples sensing from accessing.

In this paper, we formulate the problem differently from [7]
in several ways; most significant is that the transmissions of
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primary users are unslotted, and the traffic model of primary
users is a continuous-time Markov chain. The use of the contin-
uous-time Markovian model raises several complications. For a
slotted network, if a secondary user correctly senses the channel
to be idle, then the transmission of the secondary user will not
cause interference to the primary user (assuming of course per-
fect slot synchronization). For the unslotted network considered
here, however, there is always a chance that the transmission of
the secondary user interferes that of the primary user since the
primary user may start to transmit at any time.1 Therefore, the
problem of finding the optimal access policy under interference
constraints is nontrivial.

The optimization and sensing strategies proposed in this paper
are also quite different from those in [7]. Zhao et al. in [7] develop
the optimal policy under the finite-horizon POMDP formulation
that has a complexity growing exponentially with the dura-
tion of the transmission. Here, we consider an infinite-horizon
optimization where the complexity does not grow with the
length of the transmission. Note that the corresponding infinite-
horizon POMDP problem is much more complicated [11], [12].

The main contributions of this paper are as follows. Assuming
that multiple primary user channels evolve independently as
continuous-time Markov chains, we propose an access scheme
referred to as periodic sensing opportunistic spectrum access
(PS-OSA). The key idea of PS-OSA is to remove the partial ob-
servability by sensing the available channels periodically. While
restricting to periodic sensing is suboptimal in general, the pro-
posed scheme significantly reduces the complexity required by
the optimal OSA proposed in [7] under the POMDP framework.
When constraints on interference levels are imposed, we are
able to formulate the problem as a constrained Markov deci-
sion process (CMDP) [15] and solve for the optimal policy via
a linear program. A slight generalization is needed, however,
because of the periodicity of the induced Markov chain. Simu-
lation examples are presented to demonstrate a number of prop-
erties of the proposed approach, including its performance gap
to the optimal (fully observable) scheme and the robustness of
the algorithm against parameter perturbation. It is shown that
when the constraints on interference are tight, the performance
loss of PS-OSA is negligible.

B. Organization and Notation

This paper is organized as follows. The system model is intro-
duced in Section II. The periodic sensing strategy is described
in Section III where we specify the sensing protocol and give
the mathematical description of the Markovian system induced
by the sensing protocol. Properties of the Markov chain are also
provided. Next we present the optimal PS-OSA in Section IV.
Actions, rewards, and costs are defined first followed by the for-
mulation of the MDP problem. A solution based on linear pro-
gramming is then presented. In Section VI, we present simu-
lation examples aimed at illustrating the performance and the
robustness of the proposed algorithm. The paper concludes by
summarizing our results and stating the limitations and future
directions.

1We assume that primary users do not backoff due to secondary user transmis-
sions. This might be a restrictive assumption if primary users employ random
rather than scheduled access protocols.

Notations used in this paper are mostly standard and summa-
rized in the Appendix. In general, random variables are capi-
talized and their realizations are in lower case. In addition, the
indicator function of a set is denoted as .

II. SYSTEM MODEL

Assume that there are parallel channels (indexed from 0 to
) available for transmissions by the primary and secondary

users. Consider a hierarchical access scheme in which the pri-
mary users access these channels according to a certain protocol
(scheduled or random access) and a secondary user tries to ac-
cess one of the channels opportunistically.

We assume that the occupancy of each channel by a primary
user evolves independently according to a homogeneous con-
tinuous-time Markov chain with idle and busy

state, respectively. This is motivated by unslotted transmis-
sions of WLANs. Experimental results indicate that the traffic of
WLAN users can be adequately modeled as a continuous-time
semi-Markov process [10]–[14]. We note that the simplifying
Markovian assumption, though not necessarily accurate across
the entire traffic regime, seems to have a reasonably good fit
with measurement data [10].

Due to the Markovian assumption, the holding times are ex-
ponentially distributed with parameters for the idle and

for the busy states, respectively. We stress that the primary
system is not slotted; primary users can access the channel at
any time.

In contrast to the primary users, the secondary user employs a
slotted communication protocol (consider Bluetooth as a prac-
tical example). In each slot the secondary user i) senses one of
the channels at the beginning of the slot, ii) uses the sensing
result to decide if and in which channel to transmit, and iii)
receives an acknowledgement by the secondary receiver if the
transmission is successful.

The proposed scheme can easily be generalized to cases when
the sensing of and the transmission across multiple channels is
possible. For ease of presentation, we restrict ourselves to single
channel sensing and transmission in this paper, which gives rise
to the partial observability of the Markov process. Such a restric-
tion can occur with existing hardware, so the OSA solution for
this case can potentially be implemented with legacy systems.

A block diagram of the system is shown in Fig. 1. The signal
captured by the antenna is passed through an analog front end
and sampled within the sensing block. A decision is made on
whether the primary user is present, and this sensing result
is passed on to a controller that decides whether it is safe to
transmit (and if yes, in which channel). If a transmission occurs,
the secondary user’s data are fed to the transmit modem which
in turn interfaces the analog front end.

We assume that synchronization is maintained between the
secondary sender and receiver. Indeed, periodic sensing simpli-
fies synchronization since sender and receiver need not coordi-
nate their sensing pattern. If the sensor readings (busy or idle)
are the same at the secondary user sender and receiver, synchro-
nization is maintained by using the same random seed. When
the sender and receiver have different sensing results, there is a
probability that the transmitter and the receiver will tune to dif-
ferent channels, and the ensuing transmission, of course, fails.
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Fig. 1. System block diagram.

The lack of acknowledgement, on the other hand, makes both
ends aware that a sensing error occurred in the previous slot.
They can then set the previous sensing result to a predetermined
value. In addition, acknowledgements and signaling informa-
tion can be multiplexed with data to ensure synchronization.
The implementation details are not considered in this paper, al-
though we do provide simulation results that include cases when
sensing errors occur.

III. PERIODIC SENSING OPPORTUNISTIC SPECTRUM ACCESS

We assume that the secondary user cannot sense all chan-
nels at the same time. This is motivated by the need of de-
veloping access protocols without adding an additional multi-
channel sensor to receivers. On the other hand, this assumption
makes the problem of finding an optimal access strategy chal-
lenging since the state of the system at any time is only partially
observed. In this paper, we render the problem tractable by pos-
tulating a periodic sensing approach, referred to as PS-OSA. We
thus decouple the sensing and the access parts of the problem.
While imposing a periodic sensing strategy is in general subop-
timal, it leads to a fully observable Markov decision process and
simplifies the optimal protocol design considerably.

A. Sensing and Transmission Structures of PS-OSA

We describe here the PS-OSA protocol for the secondary user,
leaving the optimization of the protocol to Section IV.

Recall that the secondary user operates in a slotted fashion.
The sensing protocol is periodic with period equal to the
number of available channels.2 The access protocol, on the other
hand, depends on the sensing result and is not periodic.

Fig. 2 illustrates the sensing and transmission events of
the secondary user. Each protocol period contains slots.
Without loss of generality, we can assume that the secondary
user senses the channel in an increasing order, starting from
the smallest index (say, channel 0). At the beginning of each
slot, the secondary user senses the channel. Based on this and
all past sensing results, the secondary user takes an action of
either transmitting on one of the channels or not transmitting
at all. Notice that we allow the secondary user to transmit in a
different channel from that it has just sensed. See the third slot
in Fig. 2.

2The proposed scheme applies easily to the case when the protocol period is
greater than N .

Fig. 2. Sensing and transmission structure for an N = 4 channel system.

B. Induced Markov Chain

We derive in this section the Markovian structure for
PS-OSA. At the beginning of the th slot, ,
channel is sensed, where denotes the slot size,
and ‘mod’ denotes the modulus operation.

With periodic sensing, after sensing is completed in the th
slot , we define an -dimensional vector random process

by

if
otherwise

(1)

for with as its dis-
crete-time index. Here is the number of channels, and
contains the sensing results of the most recent slots. When
sensing is active in channel , the th component of is up-
dated with the measurement of the state of th channel at the
beginning of time slot .

The Markov chain that describes the observed process also
depends on the “age” (in terms of number of slots) of sensing
result for channel . Let be the position of the slot
in the current -slot protocol period. If channel is sensed in
slot , then the sensing result has the age of . In the

th slot, the next channel is sensed, and the age of the
sensing result for channel is . In general

(2)

We are now ready to state the theorem that gives the Markov
chain description of the observed traffic dynamics.

Theorem 3.1: Consider the parallel channels with traffic
modeled by independent binary-state continuous-time Markov
chains. For channel , let be the mean holding time for state
0 and for state 1, and denote the transition rate (generator)
matrix by

(3)

Then, the vector process , defined in

(1) is a discrete-time Markov chain. Let be
the channel sensed in slot . The transition probability of

is given by

if

otherwise
(4)
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where is the transition probability of
chain (over time ) from state to .

Proof: See the Appendix.
The periodicity of the Markov chain comes naturally from

the periodic sensing employed in PS-OSA. Since every state of
is recurrent and depends only on , we

also have the following theorem.
Theorem 3.2: The process is irreducible and periodic

with period . For each , the process
, has the stationary distribution

(5)

where denotes the indicator function and

(6)

Proof: See the Appendix.

IV. OPTIMAL PS-OSA

Having characterized the Markov chain induced by the pri-
mary user and the adopted slot structure for the secondary user,
we need to add a control dimension to our problem. Specifically,
after each sensing operation, we can either choose to transmit
in one of the channels or, alternatively, not transmit at all. In
this section, we formulate the decision problem of the secondary
user as a CMDP. We start with specifying actions and rewards,
introduce throughput and interference, and finally convert the
CMDP to an equivalent linear programming (LP) problem.

A. Actions and Rewards

Let the action chosen in slot under policy be denoted as
; choosing symbolizes

transmission in the th channel whereas means no
transmission.

If we choose to transmit, we accrue a reward when the trans-
mission is successful or incur a cost otherwise. For simplicity,
we assume here that an unsuccessful transmission incurs cost
only if there is a collision with the primary user. (One can, of
course, include cases when the transmission is not reliable even
in the absence of collision.) It is stressed that even if a channel
has just been sensed idle, a collision can still occur since the pri-
mary user’s medium access is not slotted.

Let us define the reward accrued by a successful
transmission in slot with sensing result and action
as

(7)

Note that the above reward is the (conditional) mean successful
rate. Analogously, we can define the cost of choosing action
as

(8)

which is the probability that the transmission leads to a collision
with the primary user. The following theorem gives the expres-
sion of reward [also for the cost through (8)].

Theorem 4.1: The immediate reward in the th slot can be
analytically evaluated by

(9)

where

(10)

Proof : See the Appendix.
It is worthwhile to note the special case where and

channel is sensed at , i.e., . In this case, we
have

(11)

That is, when and we transmit in channel , the imme-
diate reward will be ; when and we transmit
in channel , no reward will be obtained.

B. CMDP Formulation

Here, we aim to maximize the throughput of the secondary
system while abiding by hard constraints on the level of inter-
ference. Mathematically, we can formulate this goal as maxi-
mizing the average number of successful transmissions (of the
secondary user)

(12)

where the expectation is taken over the probability distribution
induced by a policy .

At the same time, we have to abide by the constraints on inter-
ference to individual primary users. Since the interference only
occurs when the secondary user is attempting to transmit in a
time slot where the channel is not empty, under policy and for
the primary user in channel , we define the asymptotic ratio of
collision and successful transmission slots of the primary user
as a measure for the degree of the interference due to the pres-
ence of the secondary user. In particular

(13)

where is the total number of slots occupied by
the primary user in channel up to time , and

, the probability that channel is
chosen by policy for the secondary user to transmit, given
sensing result at time .

The stochastic optimization problem is thus

(14)
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subject to

(15)

where are given constants.
The problem thus falls into the category of CMDPs [16],

[15] and can be solved by a linear program as will be shown
in the next section. It is well known that the optimal solution
to a CMDP is, in general, randomized. The policy is thus
represented by a mapping from the set of observations and

to the probability that we choose action .
Notice that our problem is a special type of CMDP in the

sense that the underlying Markov chain is not affected by
the actions chosen by the decision maker.3 As a CMDP, it is
special also because the rewards and costs
at each are not time independent, instead, they are periodic.
Using a similar argument as in [16], it can be shown that our
CMDP problem always has an optimal solution.

C. Linear Programming Solution

In this subsection, we will provide a linear programming so-
lution to the CMDP problem formulated above in (14) and (15).

Let the probability that we choose action based on
and be denoted by . No transmission takes place with
probability . We first define a
linear programming problem as follows:

(16)

subject to

(17)

(18)

where is the stationary distribution defined in (5).
We can establish the following theorem.
Theorem 4.2: The linear programming problem in (16)–(18)

is equivalent to the CMDP problem in (14)–(15).
Proof: See the Appendix.

Once the solution
has been obtained for this linear program, the sec-

ondary user stores it as a table. The secondary user’s policy given
the observations and position in a period is to flip a biased
coin with probability ; it transmits in channel
, and with probability no transmission oc-

curs. The optimality of implies that the optimal performance
of the CMDP problem (14)–(15) can always be achieved

by a randomized periodic policy found through the linear pro-
gram (16)–(18).Although the optimal valueof the linear program
is unique, its solution may not be unique. In fact, when the con-
straints are not tight, there might be feasible solutions allowing
transmitting during a busy slot. In this case throughput is the same

3This is an idealization under the assumption that the primary users’ access
protocol is independent of the actions of the secondary users.

as the optimal throughput but they have higher collision proba-
bilities although still lower than the given level of s. Among
linear program solutions, we always use the one choosing not
to transmit in a busy channel for the obvious reason that such a
transmission yields no reward and only causes collisions.

V. SUBOPTIMAL STATIC ACCESS PROTOCOLS

Under periodic sensing, with the analytical expressions given
in Section IV for the immediate reward and collision probability,
we introduce two simple heuristic protocols that are easy to im-
plement. They can be used for comparisons as lower bounds of
the achievable throughput under constraints on collision with
primary users.

A. Memoryless Access (MA)

We consider the following simplified strategy. Under pe-
riodic sensing, if in the th slot, the secondary user senses
a busy channel , no transmission is made. If
the channel is free, it will transmit in the sensing channel

with probability . The transmission probability
is decided such that collision constraints are satisfied while
maximizing the throughput for the secondary user. For
given levels of allowed collision , this is equivalent to re-
quiring that the probability of collision in th slot is below

. Denote this heuristic
policy as . It is straightforward to show that the transmis-
sion probability is given by

(19)

and the throughput of this policy is

(20)

where is the stationary probability for
Channel to be idle.

B. Greedy Access (GA)

Here, we consider a greedy approach to DSA. Given
and sensing channel , compute the

probability
in each channel being idle in slot . Choose the channel

which is most likely idle. Transmit
in Channel with probability such that collision
constraints are satisfied while maximizing the throughput for
the secondary user. For given levels of allowed collision , this
is equivalent to require that in slot is below

. Denote this heuristic policy as
. It is easy to show that the transmission probability is

(21)

and the throughput of this policy is

(22)

This strategy is similar to the greedy approach in [6].
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Fig. 3. Throughput of secondary user using optimal periodic sensing.

Fig. 4. First primary user’s collision probability with the secondary. The range
of interference level is within the interval [0; 0:06] and  =  .

VI. NUMERICAL EXAMPLES

In this section, we present three numerical and simulation ex-
amples: one on the performance of the optimal policy under
periodic sensing, the second on the robustness of the optimal
policy against perturbations of primary users’ traffic parame-
ters, and the third on the robustness of the optimal policy in the
presence of sensing errors.

In our experiments and calculations, the choices of and are
motivated from experiments conducted in [4]. In particular, the
parameters are chosen based on a VoIP application (“Skype” con-
ference call session) with three participating parties. The idle-
times, although showing some heavy-tailed behavior, can be ap-
proximated by an exponential distribution with parameter
4.2 ms. We assume 1 ms for the channel’s busy period.

Example 1. Performance of the Optimal Policy Under Peri-
odic Sensing: In this example, we focus on the case and
consider the tendency of throughput increase as we loosen the
interference constraints. By assuming a slot size ms,
we obtain the throughput characteristics in Fig. 3 and the col-
lision probability (shown only for the first channel) in Fig. 4.
We compare with a benchmark protocol that assumes full ob-

servability (FO) of all channels at the beginning of every slot.4

Note that the MDP based on FO gives an upper bound on perfor-
mance. Two other heuristic protocols, (MA and GA) described
in Section V, are also compared; they serve as lower bounds on
throughput since they give feasible yet suboptimal solutions to
the linear program.

We observe in Fig. 3 that PS-OSA has the performance close
to the upper bound (FO) when the constraint is tight, viz.,

. The optimal PS-OSA matches that of the full obser-
vation (FO), and both curves grow linearly with the value of .
In the region where becomes larger , there
is a loss in the throughput of PS-OSA. When becomes large
enough, the throughout PS-OSA matches that of the full obser-
vation again and approaches a maximum constant value.

The reason behind this trend can be intuitively understood
as follows. When is small, the constraint on interference in
each channel is so restrictive that the maximum achievable
throughput is directly limited by the allowed level of collisions.
The increase in throughput is proportional to the amount of
relaxation in the level of the constraints. When is large, there
is essentially no constraint on interference. In such a case, both
PS-OSA and FO solve unconstrained problems whose solutions
are insensitive of the value of .

Fig. 3 also includes the performance of two suboptimal but
simpler techniques. The GA protocol achieves 80% of the
throughput of PS-OSA. One advantage of the heuristic lies
in its simplicity when the strategy needs to adjust frequently
in response to frequent changes in parameters of the primary
channels. The MA protocol, on the other hand, seems too
conservative by heavily penalizing a collision in the next slot.

Simulation results on collision probability shown in Fig. 4
further support the above analysis. The first primary user’s
collision probability with the secondary user is equal to
in the region , and less than in the region

. The reason is that when is small, the
throughput is limited by the restriction imposed by small colli-
sion probability with the primary user; when is large enough,
the constraint on the first user is no longer active, by taking
advantage of the transmission opportunity fully, the secondary
user’s throughput can be maximized. The maximal value of
collision probability is below 1 because we assume that the
secondary user never transmits in a channel sensed as busy.

Example 2. Robustness to Parameter Perturbations: In this
example, we evaluate the robustness of the optimal solution
when the parameters of primary users deviate from their as-
sumed norms. The setting of the experiment is the same as in
Example 1 except we allow 5% deviations of . Figs. 5 and
6 show the results for throughput and collisions, respectively.
It is clear that both throughput and interference change slightly
as the parameter increases or decreases slightly. It is also rea-
sonable that represents the average length of idle period,
so the increase in leads to a decrease in length of idle period,
resulting in lower throughput.

Example 3. Robustness to Traffic Model: In this example, we
evaluate the robustness of the optimal solution when the Mar-
kovian traffic model is violated. Based on the analysis in [4], the

4The full observation case is the standard CMDP problem that admits the
same linear programming solution.
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Fig. 5. Effect of primary user traffic parameter change on throughput.

Fig. 6. Effect of primary user traffic parameter change on collision probability.

following more realistic traffic model is used. The busy period
is constant and equal to 1 ms. The idle periods follow a mixture
distribution

where is the uniform distribution on the
interval and is the generalized Pareto distri-
bution with parameter and

. The mean value of the idle time is
4.2 ms. The other experimental settings are the same as in Ex-
ample 1. The simulation results for a total of 20 000 slots are
shown in Figs. 7 and 8 where the Markovian benchmark is la-
beled as (Th). The non-Markovian curve is labeled as (NM).

When the Markovian traffic model is violated, our simulation
shows that the throughput only varies slightly. The difference is
less than 4% over the region . There are about the
same number of collisions over the region and less
collisions over the region .

Example 4. Robustness to Sensing Errors: In this example,
we evaluate the robustness of the optimal solution when the

Fig. 7. Throughput for non-Markovian traffic model.

Fig. 8. Collision for non-Markovian traffic model.

channel sensing is not perfect. The probability of sensing the
state of each channel correctly is 0.95. Other settings of the ex-
periment are the same as in Example 1. The simulation results
for a total of 20 000 slots are shown in Figs. 9 and 10 where the
noiseless benchmark is labeled as (Th).

When observation noise is added, as expected, our simula-
tion shows that the throughput (SN) decreases. The degradation
caused by noise is less than 17% over the region
and less than 6% over the region . Due to the
sensing noise, the collisions increase to some extent. This may
be problematic when the collision constraint is restrictive. One
way to deal with this problem is to require tighter s in the linear
program.

VII. CONCLUSION

We have considered the problem of sharing spectrum in
the time domain by exploiting idle periods between bursty
transmissions of a primary user. By focusing on a periodic
sensing scheme, we are able to formulate the problem as a
constrained Markov decision process (CMDP), and find the
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Fig. 9. Effect of observation noise on throughput.

Fig. 10. Effect of observation noise on collision.

optimal randomized control policy using a linear programming
technique. We have also introduced two heuristic protocols
which are easier to implement (without the need to solve the
linear program). We have evaluated the methods’ performance
numerically. Our results show that the periodic sensing, while
limiting the set of admissible policies, is close to the best
achievable performance when all channels can be sensed si-
multaneously.

We have omitted a number of issues in favor of a simpler
presentation. Some of these issues can be easily addressed, but
others require a more elaborate investigation. For example, the
results of this paper can be easily generalized to the case when
multiple channels can be sensed simultaneously [17], resulting
in improved performance. We have also examined how perfor-
mance improves with the increase of the number of sensing
channels. The framework considered in this paper is also suf-
ficiently general to include other reward and cost functions for
specific applications.

The models considered in this paper, though analytically
tractable, have limitations. The Markovian traffic assumption

may not be sufficiently accurate, and more general traffic
models are preferred. We have not considered formally the
presence of sensing error except that we have used simulation
to demonstrate the robustness of the optimal PS-OSA. To this
end, the modeling considered in [5] and the ideas presented
in [9] are most relevant. The presence of more than two sec-
ondary users is not treated in this paper, which requires the
modeling of contention. There are also practical protocol issues
of synchronization and the estimation and tracking of the traffic
parameters. These are topics for further investigation.

APPENDIX

Before we present the proofs of results, let us introduce a
notation which will be used frequently below. Define

as the slot index where channel was last sensed be-
fore the th slot. As a convention, if channel is sensed at

, we assume . With this notation,
. It is clear that since

is the number of time slots passed at time since the last
sensing was made in channel . So we can determine as

.
Proof of Theorem 3.1: Note that process starts at time
. Thus, we need to prove [18]

(23)

In fact, for , with , sensing channel is
. Note, our process starts from time . Since

only this channel’s state is updated, should be different
from in only the th component. The th component of

is . Thus, we have

if for all ;

(24)

otherwise. Due to the independency of channels, we have

if . Recall that is
the number of slots passed at time since the last observation
in channel . Furthermore, since every channel is Markovian, we
have

This implies that (23) holds.



ZHAO et al.: OPPORTUNISTIC SPECTRUM ACCESS VIA PERIODIC CHANNEL SENSING 793

The above discussion also enables us to reduce the determi-
nation of the transition probability

to the determination of

This turns out can be done since for continuous Markov Chains
with parameters (idle) and (busy), we can obtain

expressions of for all .
Let the transition rate matrix for each channel be , then we
have

(25)

The matrix exponential evaluates to be (26), shown at
the bottom of the page. Then, for , we have

For the special case , channel is sensed at slot , thus
. Furthermore, since we are carrying out

periodic sensing with period length being slots,
. Thus, we have

As a result, we can establish that

The proof is completed.
Proof of Theorem 3.2: The steady-state probabilities of the

observations generated by periodic sensing
, for any are given by

(27)

where represents the number of times appears in the
sequence .

The existence of (27) is guaranteed for all and
since Markov chains , are irreducible
and aperiodic. In fact, we have transition probability

where the second equality is due to the periodicity of
indexes , the first equality is due to indepen-
dent of the primary user processes . This implies

for all
pairs of vectors . In terms of chain structure,

, this means that all states are immediately reachable
from each state, thus the chain is irreducible and aperiodic.
Furthermore, based the transition probability expression, we
can derive the stationary distribution in product form as

(28)

where denotes the indicator function and

(29)

In fact, it is not hard to show that is an invariant distri-
bution of the sequences , for all

. It is interesting to note from (28) that the
stationary distributions are identical for all . This is intu-
itive: the processes of all primary user channels are stationary, as
a result the distribution of the observation made by the secondary
user should not depend on the specific time in a period.

Proof of Theorem 4.1: Observe that

an analytical expression for the reward is derived as follows:

(30)

(26)
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where we recall that the subscript notation in-
dicates the transition probability form state to 0 in channel
(over time ) and .

If we introduce a table indexed by

(31)

then based on (26), we have

(32)

for , the immediate reward and cost in th
slot can be analytically evaluated by

(33)

and

(34)

Proof of Theorem 4.2: The proof is based on the application
of the existing CMDP theory [16]. Compared with the standard
CMDP formulation, our model in (14) and (15) has two major
differences. One difference is that the reward function
and the cost function is are periodic instead of constant
for a given state and action pair . However, if we extend the
state vector to include the position in a period, , we
will obtain a recurrent Markov chain with time invariant reward
and cost. The other difference is that our constraints are not in
form of a time average. This difference is superficial in the sense
that we can view as

and note that the limit always exist
. So, if we redefine the state as

and the constants in the right hand of the constants as
, we can convert our CMDP problem

to the standard form of CMDP formulation in [16]. According
to CMDP theory, when the state and action space are both finite,
for unichain (including recurrent) chains, the optimal value is
always achieved at some “stationary” randomized policy. Here,
stationary is in terms of the extended state space which means
periodicity in the original state space.

First, we show the optimal throughput of our CMDP is no
greater than that of the optimal value of the LP. Let us consider
a fixed optimal periodic policy of the CMDP. If we classify
transmissions according to the position in a period, the objec-
tive function in (14) can then be written in form of

Denote as the frequency of action
chosen by in slot when the observed value of

equals to in a sample path with . In
other words

(35)

According to CMDP theory, for the chosen policy, the frequency
of the state–action pair exists. Let

us denote collectively these frequencies as

Given a position in one sensing period , under policy ,
for the process , the expected total
number of successful transmission

equals to

(36)

Since the sensing results on primary users are not affected by the
transmission policy of the secondary user. Assume the processes
of primary users are in stationary states at the beginning, that is,

has the distribution

where

and

Then, we have

and
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As a result

and

for all . Especially, we have

and

for all . Since the processes of primary user channels are
independent, for any given , we have

It then follows from (28) and

that

for all . Furthermore, we establish from (35) that
(36) can be rewritten as

(37)

As a result, the asymptotical transmission rate under policy
at the position in a period is given by

Thus, sum over , we have

Similarly to previous derivations, the constraints on the sec-
ondary user’s interference to primary users in the individual
channel can be converted to the following inequalities:

where . In fact, for policy , we have

Now put everything together, we have verified that is a fea-
sible solution to our linear programming problem defined in (16)
and (18).

Second, we will show that the optimal value of the linear pro-
gramming problem is no greater than that of the CMDP. It is suf-
ficient to show that any optimal solution to the LP is feasible to
the CMDP. In fact, given an optimal solution

to the LP, the secondary user
need only do the following to establish a feasible solution
to the CMDP. Store as a table. Given the observations and
position in a period, the secondary user’s policy is simply to
flip a biased coin such that with probability we
transmit in channel and with probability no
transmission occurs. Let us call this random policy . It is
straightforward to verify that the policy satisfying

and

since the frequency of the state-action pair of this policy
is exactly . It then follows from the feasibility of , i.e.,
(17), that

(38)

which means that (17) holds. The proof is completed.
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