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n this article, we provide a signal processing perspective on large-scale sensor networks. We focus
on two characteristics of sensor networks: application specificity and energy constraint. The for-
mer requires that network protocols be designed for the application at hand, which is often signal
processing in nature, and measured by application-specific metrics. The latter calls for novel dis-
tributed signal processing techniques to provide accurate and timely network state information

that can be exploited by network protocols to ensure energy efficiency. The underlying theme is about
how a principled integration of signal processing and networking can lead to an efficient and fair use
of limited resources. We hope to demonstrate that capturing and exploiting dependencies between sig-
nal processing and networking offer design choices resulting in improved network performance.
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We start with challenges brought forth by military applica-
tions envisioned for sensor networks. We then extract from these
challenges several typical design issues in which signal processing
and networking intertwine. By presenting these issues along with
their potential solutions in two complementary categories, signal
processing for networking and networking for signal processing
applications, we hope to illuminate the interaction between signal
processing and networking. Two specific examples, one from each
category, are then provided using medium access control (MAC)
as a case study. We show that the optimal MAC under an energy
constraint requires integration with the physical layer and the
separation of MAC from the application layer leads to an irrecov-
erable performance loss in detection and estimation. This article
is then concluded with a few words on potential unintended con-
sequences of an integrated design for sensor networks.

CHALLENGES IN SENSOR NETWORKS 
FOR MILITARY APPLICATIONS
Future tactical military communications will involve the deploy-
ment of large-scale sensor networks in which hundreds to thou-
sands of microsensors, inexpensive and lightweight devices with
integrated sensing, computing, communications, and possibly
actuation capabilities, will work together to achieve a common
mission-specific objective [1]. The nodes may be heterogeneous
with varying resources, capabilities, and mobility (e.g., fixed
unmanned ground sensors and robotic sensors). The network
must operate under severe constraints on energy and band-
width, over challenging interference-rich radio channels, and
with dynamic changes in topology and connectivity. The quality
of service (QoS) requirements will be diverse, ranging from
time-critical data to support telemedicine, robotics, and fire
control to background data.

The tradeoffs between local or distributed data processing and
transmission of raw data to a fusion center must be examined
under the constraints of energy, bandwidth, and latency. The rel-
evant metric should be application specific, e.g., the accuracy of
target detection and target tracking, the accuracy of estimating
the density of a chemical spill [2]–[4], the timeliness in detecting
the spread of an epidemic, the accuracy of classification, or the
quality and utility of the delivered information. The metric may
only loosely capture the information needs in a tactical scenario
(e.g., quantification of the commander’s intent is not easy).
Sensor nodes are typically duty cycled to save energy and prolong
lifetime; this in turn impacts MAC/routing issues particularly
when the sleep patterns are not coordinated or prescheduled.
Given that the sensors communicate to the fusion center over a
wireless link and given the vision of a large-scale multihop ad
hoc network, the characteristics of the radio channel and the
MAC and routing protocols will also impact this tradeoff study.

A glance at current and past U.S. Department of Defense pro-
grams is informative in tracing the evolution of sensor network
applications. Detection, classification, and tracking of targets are
classic applications of sensor networks, both in the civilian and
military sectors. There is a long history of wired sensor networks
where power and bandwidth were not seriously constrained.

Examples include AWACS, networked radar systems, ocean bed
acoustic sensor networks for submarine detection and tracking,
and the DARPA Distributed Sensor Networks program [1].

The U.S. Army’s Disposable Sensors program envisages a dis-
tributed sensing system based on a heterogeneous mixture of
inexpensive seismic, acoustic, RF, chem/bio, magnetic, and
infrared sensors, consisting of as many as 104–107 sensors [5].
Thus understanding scaling issues and developing scalable algo-
rithms and protocols is critical. Battlefield environmental moni-
toring such as sensing biological, radioactive, nuclear, chemical,
and explosive materials is becoming increasingly important in
asymmetric warfare scenarios as well as from public health and
safety perspectives in peacetime. The sensing environment may
be harsh and unamenable to predeployment of wired networks,
or the network may have to operate in hostile territory. As such,
there is an increasing push to develop disposable sensors.

The vision of the DARPA Networked Embedded Systems
Technology (NEST) program is to enable “fine-grain” net-
worked fusion of a distributed system of 100–100,000 simple
computing nodes. Such sensors may provide cues to wake up
resource-consuming imagers. Sensors may be manually
emplaced or dispersed from cannons or moving ground/aerial
vehicles. Severe constraints on energy, computing, and com-
munications capabilities dominate this problem. As the scale
of the distributed network increases, networking and net-
worked signal processing become critical.

Such a massively deployed network could provide a replace-
ment to landmines [6]. In a self-healing minefield, the network
continuously monitors itself; when nodes die, other nodes may
move to maintain sensing coverage. Self-configuration and re-
configuration to maintain coverage and connectivity is an
important problem, and the communication overheads for
these cannot be ignored in an energy-constrained network.
There are tradeoffs in the overhead to acquire channel informa-
tion and the advantages to be gained in exploiting such (usually
imprecise and incomplete) information. There is a clear inter-
play between sensing, signal processing, communications, and
actuation in such a network. A typical landmine replacement
sensor is about 12 cm in diameter, 6 cm high, with 10% of the
volume being devoted to batteries. Such a sensor can store
about 18 Wh or 65 J/K of energy (nine Li-ion batteries). With
antennas close to the ground, it takes about 1 mJ to reliably
transmit 100 b across 100 m over a Rayleigh fading channel
with an attenuation factor of four. Given that energy is also
consumed in sensing, RF monitoring, and low-level circuitry
in sleep mode, scalable energy management protocols, energy-
efficient processing, and communications become critical.

Robotic sensors, micro-unmanned autonomous vehicles, or
sensors with some ability to move have long been envisioned for
applications such as in disaster recovery and urban rescue oper-
ations. Since mobility itself can consume a large amount of
energy, coordinating sensor movements and communications
becomes a challenging task. Here, scaling may not be an issue,
but the finite battery energy and the expected short lifetime of
the network must be taken into account.
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Application-specific sensor suites will also provide the basis for
disposable battlefield intelligence systems for clearing and securing
urban centers, the so-called military operations in urban terrain
(MOUT). As an example, consider a sniper localization system [7]
consisting of acoustic shockwave detectors and a multihop ad hoc
network where time of arrival is used to localize the sniper. MAC
(which sensor should report its data) clearly impacts the localiza-
tion accuracy, and network-wide time synchronization must be
ensured. Thus the application metric drives not only the parame-
ters at the local sensors but also the MAC protocols. In a multihop
network collecting time-sensitive information, latency is an impor-
tant metric and should be addressed in routing protocols. In this
class of applications, where neighboring sensors have correlated
information, there is a clear tradeoff across compression at individ-
ual nodes, local data aggregation among neighboring nodes, the
global performance metric, and the total energy expenditure.

From the preceding examples of sensor networks, we see
that scaling issues and energy efficient signal processing are
critical in maximizing the network lifetime. These examples
illustrate the essential interplay between sensing, signal process-
ing or computing, transmission, MAC and routing protocols in a
wireless sensor network.

THE INTERPLAY BETWEEN SIGNAL PROCESSING 
AND NETWORKING
In this section, we hope to illustrate that a cross-layer approach that
integrates signal processing and networking is crucial to meeting
the challenges in sensor networks for military applications. We
focus on the interplay between signal processing and networking by
highlighting several design issues central to sensor networks.

SIGNAL PROCESSING FOR NETWORKING

EXPLOITING PHYSICAL LAYER PARAMETERS 
IN NETWORK PROTOCOL DESIGN
Under the layered architecture, network protocols are designed
with minimum input from the physical layer. To an upper-layer
protocol, the physical layer is a black box in which nodes are
indistinguishable. Starting to gain recognition in the signal pro-
cessing and the networking communities is the viewpoint that a
tight coupling between physical and upper layers leads to a
greater level of adaptivity to the wide-range of variations in wire-
less channels. A number of physical layer parameters have found
their role in MAC and routing. Among these parameters, chan-
nel state and residual energy are perhaps the most relevant to
the energy efficiency of sensor networks.

Using channel state information (CSI) in transmission and
networking is the fundamental idea behind opportunistic strate-
gies. Sparkled by the work of Knopp and Humblet [8], a number
of opportunistic MAC protocols [9]–[13] and channel-adaptive
routing schemes [14]–[17] have been proposed. While exploiting
CSI for different objectives subject to various constraints, these
protocols bear the same signature: prioritizing nodes according
to their channel states to take advantage of the diversity of wire-
less channels.

It has been widely recognized that the residual energy informa-
tion (REI) of individual nodes plays a crucial role in network life-
time. Various sensor placement schemes [18], [19], routing, and
transmission protocols [20]–[28] that utilize REI have been pro-
posed. The role of REI is to balance the energy consumption across
the network by prioritizing nodes with more residual energy for
energy-consuming tasks such as transmission. We will show that
both CSI and REI are critical to maximizing network lifetime.
Given that the node with the best channel may not have the most
residual energy, the fundamental question is how to achieve the
optimal tradeoff between CSI and REI in the protocol design.

While recognizing the benefit of exploiting CSI and REI, we
cannot ignore the cost associated with obtaining this informa-
tion. A protocol requiring global information on channel state
and residual energy may encounter an unacceptable level of
overhead in large-scale networks [29]. It is thus desirable to
design distributed protocols using only local CSI and REI to bet-
ter address the tradeoff between the benefit and the cost.
Energy-efficient signal processing techniques for acquiring CSI
and REI clearly affect this tradeoff, providing another example of
signal processing for networking as examined below.

NETWORK STATE ESTIMATION FOR 
ADAPTIVE NETWORKING
Sensor networks, especially those deployed for military applica-
tions, have to operate in a wide range of time-varying conditions:
sensor locations are unpredictable prior to deployment; network
energy profile and sensor population change over time; network
topology varies due to duty cycling, battery depletion, and friendly
interference and hostile jamming; traffic assumes various hetero-
geneous patterns and QoS requirements due to events that are
random in time and space. Adaptability is fundamental to the effi-
cient use of limited resources. An enabling component of adaptive
networking is sophisticated signal processing that provides accu-
rate and timely network state estimation. Here network state can
be any physical parameter that is of interest to network design,
including sensor location, channel state, and residual energy
profile as well as network topology and traffic characteristics.

Sensor synchronization and localization are crucial to many
network operations such as duty cycling, scheduling, collabora-
tive transmission, and geographic routing. The unique charac-
teristics and design constraints of sensor networks have cast
synchronization and localization in a new context and stimu-
lated increasing interests from the signal processing communi-
ty in revisiting these two classic problems. A detailed survey on
this topic can be found in [30]. In [86], sensor self-localization
is cast as a problem of inference in graphical models, where
power conservation and careful use of scarce communication
resources can be effectively addressed.

As pointed out earlier, lifetime-maximizing protocols
require knowledge of the network residual energy profile. This
information, as well as the population/density of functioning
sensors, is also important for network maintenance. For exam-
ple, the knowledge of the number of operating sensors as a
function of geographical location facilitates the decision on
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whether and where to deploy new sensors. It is thus crucial to
track the network energy profile and the sensor population.
Ignoring the stringent energy constraint, the large network
size, and the harsh wireless multiaccess medium leads to a
trivial solution where every sensor is scheduled to report its
energy level periodically. A desired solution is to piggyback the
residual energy information on data packets to avoid extra
transmissions solely for the purpose of network monitoring.
This approach, however, provides only an energy profile sam-
pled in space and time. The sampling pattern is determined by
the network application (for example, the spatial and temporal
distributions of the random events being detected by the net-
work) and the MAC and routing protocols used in data collec-
tions. How to infer the energy profile from the collected data
samples is thus a complex signal processing problem and is
coupled with the upper layer protocols. Detailed discussions
on this problem and several scalable estimation algorithms for
energy profile monitoring can be found in [31]–[33].

Sensor networks may exhibit a wide range of variations in
traffic load and traffic pattern, from quiescent sensing state to
emergency response. It is highly desirable to have traffic-adap-
tive MAC and routing that are reconfigurable based on the net-
work operating conditions [34]. For example, at times when an
emergency arises resulting in a rush of data toward certain
parts of the network, routing protocols should be proactive,
maintaining network connection to ensure rapid and energy-
efficient data delivery. When the network is in a quiescent
sensing state, routing protocols should be reactive, establish-
ing links and connections only when necessary. A fundamental
challenge in achieving this traffic-adaptive networking is to
develop signal processing techniques for traffic estimation and
change detection. Such signal processing techniques should be
distributed to ensure scalability and avoid extra data flows.
Classic techniques in change detection [35] and nonparamet-
ric estimation [36]–[38] may find new exciting applications in
sensor networks as demonstrated in [39] and [40].

NETWORKING FOR SIGNAL PROCESSING APPLICATIONS
Sensor networks are application specific, and a wide range of
applications being considered (e.g., detection, estimation, mon-
itoring, classification, and tracking) rely on signal processing
tools. Since the network as a whole is to perform certain signal
processing tasks, the network should be designed not for indi-
vidual nodes but to optimize the application-specific metric. We
present here a brief survey of networking protocols designed
specifically for enhancing signal processing performance.

PROTOCOL DESIGN FOR DETECTION 
AND PARAMETER ESTIMATION
Making statistical inference using distributed sensors has long
been a subject of investigation (see the references in [87]).
Earlier work in this area aimed at integrating data collected at
different radar sites that are connected with bandwidth con-
strained but wired links. The sensor networks considered in
recent years are different in two important aspects. First, the

transmissions from sensors to the fusion center are wireless,
mutually interfering, and possibly through multihop routing.
Second, the number of sensors involved in sensing and commu-
nication can be large, and their deployment may be random.

Statistical inference over multiaccess channels has been con-
sidered recently. If sensors have locally quantized measurements,
a sufficient statistic for statistical inference at the fusion center is
the empirical measure or type (loosely, the histogram of quan-
tized data) [41]; collecting data from individual sensors is in fact
unnecessary. This observation has led to the so-called type-based
multiple access (TBMA). TBMA provides a data-centric MAC pro-
tocol for detection [42], [43] and estimation [44], [45].

In sensor networks deployed for detection and estimation,
routing, too, should be designed to optimize signal processing
metrics. Consider solely the signal processing component. The
more data the gateway node has, the better the performance, and
the routes over which the data travel to the gateway node should
not affect the performance. This argument, however, is only valid if
there is no energy constraint, and the gateway node has the luxury
to wait until data from all sensors arrive, and there are no other
flow competing for or colliding with these routes. For battery-
operated sensors, conserving energy is perhaps the most impor-
tant design objective. Practical constraints dictate that only data
from some nodes be collected, which leads to several interesting
questions: how should the sensor network be sampled (taking into
account the spatial-temporal correlation in the data)? how should
the data be routed? what is the quality of the overall information at
the gateway node? what is the corresponding consumption in
energy, both locally, and over the network? Here, quality of infor-
mation may simply be the accuracy of detection or estimation, but
timeliness of the information adds an interesting twist.

The key step is to link detection and estimation performance
with a certain type of link metric in such a way that classic rout-
ing protocols can be used to optimize the detection and estima-
tion performance. For the problem of detecting one dimensional
Gauss-Markov process, a link metric in the form of mutual
information is defined in [46], which leads to the optimal route
that maximizes the decay rate of detection error probability.

NETWORKING FOR SIGNAL FIELD RECONSTRUCTION
Signal field reconstruction is another important application of
sensor networks. From a signal processing perspective, estimat-
ing a signal field from sensor measurements is the classic prob-
lem of signal reconstruction from possibly random samples, and
the literature is extensive. There is, however, a communication
and networking aspect of the problem unique to sensor net-
works. A network designer, on one hand, would like to recon-
struct the signal field as accurately as possible, while on the
other hand, must design the network using simple and energy-
efficient protocols. Tradeoffs thus have to be made between
reconstruction performance and energy consumption.
Achieving the optimal tradeoff requires a cross-layer approach
that connects MAC and network layer functions with application
layer attributes such as the mean square error of the signal
reconstruction.



A key issue in achieving the optimal tradeoff is to exploit the
spatial and temporal correlation of sensor measurements during
data collection so that a given reconstruction performance can
be met with minimum transmissions from sensors. The problem
becomes more complex in a heterogeneous network consisting
of sensors with different modalities. There are three approaches
to reducing spatial correlation: distributed source coding, data
aggregation, and spatial sampling. The first approach, as consid-
ered in [47] and [48], brings an information-theoretic perspective
to information retrieval in sensor networks. The second
approach is commonly used under a multihop ad hoc architec-
ture where data are aggregated at intermediate nodes along a
multihop route to a gateway node [49]–[51]. It is thus strongly
coupled with the design of routing protocols.

Under the approach of spatial sampling, the sampling pattern
is crucial to providing QoS guarantee while maintaining energy
efficiency. Taking the viewpoint that a particular MAC protocol
will lead to a certain sampling pattern of the signal field, the
authors of [52]–[55] examine the impact of MAC on signal field
reconstruction. An interesting observation is that if the rate of
sensor outage (due to duty cycling and battery depletion) exceeds
a certain threshold, the optimal deterministic scheduling scheme
may perform worse than random access. In [56] and [57], a dis-
tributed sensor scheduling scheme is proposed to ensure that a
minimum number of sensors transmit while maintaining the
reconstruction performance. In [58] and [59], a MAC scheme
along with an application-specific sampling pattern is developed
to satisfy a given QoS requirement with optimal energy efficien-
cy. An in-depth discussion on spatial/temporal sampling and
quantization in sensor networks can be found in [89].

AN INTEGRATED APPROACH TO MAC 
FOR OPTIMAL NETWORK LIFETIME
In this section, we focus on the implications of energy con-
straint on MAC design in sensor networks. We illustrate that to
achieve an efficient use of limited energy resources, MAC
design should be based upon a physical layer model that cap-
tures diversities among nodes. We show that protocols exploit-
ing dependencies between the MAC and the physical layers offer
significant improvement in energy efficiency.

LAW OF NETWORK LIFETIME
Energy-efficient design can be formulated as an unconstrained
or a constrained optimization problem [60]. In the former, the
design objective is to either maximize the number of transmit-
ted information bits per unit energy cost or minimize the total
energy consumption. An implicit assumption is that each node
has an infinite amount of energy. On the other hand, the con-
strained formulation aims at maximizing the network lifetime
under the assumption that each node is powered by a non-
rechargeable battery with a finite amount of energy.

The performance measure of network lifetime is particularly
relevant to sensor networks where battery-powered, dispensable
sensors are deployed to collectively perform a certain task. For a
communication network, which is generally designed to support

individual users, network lifetime is subject to interpretation; a
communication network may be considered dead by one user
while continuing to provide required QoS for others. In con-
trast, a sensor network is not deployed for individual nodes, but
for a specific collaborative task at the network level. The lifetime
of a sensor network thus has an unambiguous definition: it is
the average time span from the deployment to the instant when
the network can no longer perform the task.

Much has been said about maximizing network lifetime. The
lack of an accurate characterization of network lifetime as a func-
tion of key design parameters, however, presents a fundamental
impediment to optimal protocol design. Given that the network
lifetime depends on network architectures, specific applications,
and various parameters across the entire protocol stack, existing
techniques tend to rely on either a specific network setup [18],
[61]–[68] or the use of upper bounds on lifetime [69]–[76]. As
such, it is difficult to develop a general design principle.

There is a simple law that governs the network lifetime for
all applications, under any network configuration. It is shown in
[77] that the network lifetime L defined as the average time
span from the deployment to the instant when the network is
considered dead is given by 

L = E0 − Ew

λEr
, (1)

where E0 is the total initial energy over the network (not neces-
sarily uniformly distributed among sensors), Ew the expected
wasted energy (i.e., the total unused energy in the network
when it expires), λ the average sensor reporting rate defined as
the number of data collections per unit time, and Er the expected
reporting energy consumed by all sensors in a randomly chosen
data collection. (For ease of presentation, we ignore energy con-
sumption sources such as battery leakage and network mainte-
nance. Incorporating them into the formula, however, is
straightforward as shown in [77].)

TWO KEY PHYSICAL LAYER PARAMETERS AND A
GENERAL DESIGN PRINCIPLE
The law of lifetime given in (1) provides a quantitative characteri-
zation of key components that affect network lifetime under a
general network setting. Specifically, a lifetime-maximizing pro-
tocol should aim at reducing the average wasted energy Ew and
the average reporting energy Er. To reduce Ew, the protocol
should exploit REI of individual sensors to achieve balanced ener-
gy consumption across the network. To reduce Er , the 
protocol should exploit CSI to prioritize sensors with better chan-
nels for transmission so that energy consumed in transmission is
reduced. The law of lifetime thus allows us to identify these two
key physical layer parameters that affect the network lifetime.

Since channel realizations are independent of the residual ener-
gies, the sensor with the best channel may not have the most resid-
ual energy. A lifetime-maximizing protocol needs to optimally trade
off CSI and REI. A closer examination of the law of lifetime given in
(1) reveals a general principle for balancing CSI and REI. Consider
first Er which can be obtained by averaging the expected reporting
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energy Er(k) consumed in the kth data collection over the random-
ly chosen data collection index K as shown in [77]:

Er = EK[Er(K)],

where EK{·} denotes the expectation over K. Note that the proba-
bility mass function Pr{K = k} is determined by the probability
that the network lives to see the kth data collection, which
decreases with k [77]. This observation leads to the conclusion that
the energy consumed at the early stage of the network lifetime car-
ries more weight. Thus, reducing the energy consumption Er(k)
in the kth data collection is crucial when k is small (i.e., when the
network is young). On the other hand, the wasted energy Ew only
depends on the sensor residual energies when the network dies.
Hence, balancing energy consumption across sensors is only cru-
cial when the network is approaching the end of its lifetime.

This discussion suggests that a lifetime-maximizing protocol
should be adaptive with respect to the network age. Specifically,
a protocol should be more opportunistic by favoring the sensor
with the best channel (focusing on reducing Er) when the net-
work is young and more conservative by favoring the sensor
with the most residual energy (focusing on reducing Ew) when
the network is old. We see here an intuitive connection between
extending network lifetime and retirement planning. When we
are young, we can afford to be more aggressive, putting retire-
ment savings to relatively more risky investments. As we age, we
become more conservative. This general design principle applies
to various upper layer protocols including MAC and routing.

A DISTRIBUTED ASYMPTOTICALLY OPTIMAL MAC
PROTOCOL FOR LIFETIME MAXIMIZATION
We present here an example of applying the general design princi-
ple derived from the law of lifetime to MAC design. Consider a sen-
sor network with N nodes. For simplicity, we assume that only one
sensor is required to transmit its measurement to a mobile access
point in each data collection. Sensor measurements are in the
form of equal-sized packets. The channel between the mobile
access point and a sensor follows a block fading model with the
block length equal to the transmission time of one packet. The
required reporting energy Er(ci) of sensor i is a decreasing func-
tion of the fading gain ci. In other words, the better the channel
gain ci, the smaller the required transmission energy Er(ci). A
sensor is considered dead when its battery depletes. The network
expires when the number of dead sensors exceeds a certain per-
centage which is determined by the specific network application.
The goal here is to dynamically choose one sensor for transmission
in each data collection so that the network lifetime is maximized.

It has been shown in [29] that the above problem can be formu-
lated as a stochastic shortest path Markov decision process and the
lifetime-optimal MAC protocol is given by the optimal policy for
this Markov decision process. The value of this optimal approach
mainly lies in defining the limiting performance. Its practical value
is limited due to the large implementation overhead resulting from
centralized scheduling and obtaining global CSI and REI. It is thus
desirable to have a distributed protocol that requires only local CSI

and REI yet approaches the fundamental performance limit defined
by the optimal solution using global information.

In [78] and [79], we formulate this problem by introducing
the concept of energy-efficiency index γi which is a real-valued
function of sensor i’s channel state and residual energy:
γi = g(ci, ei). In each data collection, the sensor with the
largest energy-efficiency index is scheduled for transmission.
The problem of exploiting CSI and REI in MAC design is thus
reduced to the design of the function g.

Furthermore, such a protocol can be implemented in a distrib-
uted fashion via the opportunistic carrier sensing scheme first pro-
posed in [58]. The basic idea is to incorporate the local information
(i.e., the energy-efficiency index) of each sensor into the backoff
strategy of carrier sensing. At the beginning of each data collec-
tion, the mobile access point broadcasts a beacon signal to acti-
vates sensors. Each sensor estimates its channel gain using the
beacon signal and calculates the predefined energy-efficiency index
γi based on its own channel gain ci and residual energy ei. Every
sensor then maps its own γi to a backoff time τi based on a prede-
termined common function f(γ ) and listens to the channel.
Sensor i will transmit with its chosen backoff delay τi if and only if
no one transmits before its backoff time expires. If f(γ ) is chosen
to be a strictly decreasing function of the energy-efficiency index γ
as shown in Figure 1, then this opportunistic carrier sensing
scheme will ensure that the sensor with the largest energy-effi-
ciency index seizes the channel. (When the propagation delay is
negligible, f(γ ) can be any decreasing function. When the delay is
significant, however, f(γ ) needs to be designed judiciously to
maintain the performance of opportunistic carrier sensing. In [13],
a backoff function f(γ ) is constructed and graceful performance
degradation is demonstrated with respect to propagation delay.)

We now consider the design of the energy efficiency index γ .
Following the general design principle, we have developed in
[79] and [80] a dynamic MAC protocol that adaptively trades off
CSI and REI according to the age of the network. Referred to as
a dynamic protocol for lifetime maximization (DPLM), this MAC
protocol selects the sensor whose channel gain demands the
least fraction of its residual energy for transmission. The energy-
efficiency index is defined as

[FIG1] Opportunistic carrier sensing.
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It turns out that this simple MAC scheme is asymptotically opti-
mal. Specifically, the relative performance loss of DPLM as com-
pared to the limiting performance achieved by centralized
scheduling using global information diminishes with the initial
energy E0. The dynamic nature of this protocol is also estab-
lished in [79]. It is shown that the probability that DPLM selects
the sensor with the best channel decreases while the probability
of selecting the sensor with the most residual energy increases
monotonically with the network age.

DATA CENTRIC MAC FOR
SIGNAL DETECTION AND ESTIMATION
In this section, we give an example of networking protocol design
for signal detection and estimation. Shown in Figure 2 is a distrib-
uted detection and estimation scheme over a multiaccess commu-
nication channel in which the ith sensor obtains a quantized
measurement Xi drawn from a certain distribution. The classical
detection and estimation problem is to make an inference about θ
based on Xi. We now add one level of networking to this problem
by assuming that sensors have to deliver their measurement Xi (in
some energy-efficient form) to the fusion center through a noisy
multiaccess channel. The fusion center can be a cluster head or a
mobile access point roving around the sensor network. What makes
this problem different from the classical distributed detection and
estimation problem is the emphasis on the multiaccess channel.
Consequently, the problem is one of cross-layer design that involves
physical layer communications, MAC among sensors, and signal
processing at the fusion center that aims to satisfy application layer
specifications (e.g., miss detection and false alarm rates).

A LAYERED APPROACH TO DISTRIBUTED INFERENCE 
If a classical layered approach is used to design the MAC, the
objective then is to collect data from each sensor as rapidly and
as reliable as possible and use the collected data for statistical
inference. For example, one would encode and modulate the
measurement Xi at the physical layer and use a MAC scheme

(such as TDMA/CDMA/FDMA or a random access protocol such
as CSMA) for transmission. At the fusion center, Xi are decoded
(estimated), and the decoded Xis are used for estimating θ or
making decision on hypotheses. Separating communication
from detection and estimation has a number of fundamental
weaknesses. The statistical inference made at the fusion center
suffers from transmission errors due to channel fading and mul-
tiaccess interference. Furthermore, the strategy of transmission
over user-orthogonalized channels does not scale with the size
of the network under a fixed bandwidth constraint.

A CROSS-LAYER DESIGN FOR ESTIMATION 
OVER MULTIACCESS CHANNELS
Perhaps a holistic approach is warranted here, starting at the
performance metric that will dictate the cross-layer design.
Suppose that the fusion center has direct access to sensor meas-
urements {Xi}, and each Xi is a discrete random variable drawn
i.i.d. from probability mass function pθ = (pθ (1), . . . , pθ (k)),
where k is the number of quantization levels. In this case a fun-
damental limit on estimation performance is given by the
Cramér-Rao bound (CRB) [81]

E{(θ̂ − θ)2} ≥ 1
nI(θ)

,

where I(θ) = ∑k
i=1[(dpθ (i)/dθ)2/pθ (i)] is the Fisher informa-

tion, and n is the number of samples collected at the fusion center.
The CRB is not always achievable for finite n, but there is a class of
estimators, including the maximum likelihood (ML) estimator,
that achieves the CRB asymptotically as n → ∞.

The fusion center does not have direct access to sensor data
{Xi}, and it must make inference based on the received signal. The
problem then becomes the joint design of a transmission scheme at
the physical layer and an access scheme at the MAC layer.
Specifically, upon receiving a measurement Xi = xi, sensor i
choose a particular waveform (modulation) si(t; xi) for transmis-
sion. (Notice that each sensor may have its own transmission wave-
form, allowing the modeling of classical multiaccess schemes such
as TDMA, FDMA, and CDMA.) The fusion center receives a mixture
of transmissions from all sensors

z(t) =
∑

i

yi(t) + v(t), yi(t) = si(t; xi) ∗ hi(t),

where hi(t) is the channel fading process and v(t) the
additive noise. It should be obvious that the design of
signaling scheme {si(t; x)} will affect the detection
and estimation performance.

The problem of cross-layer design can then be for-
mulated as the joint optimal design of si(t; xi) (sub-
ject to power and bandwidth constraints) at the sensor
and the statistical inference algorithm at the fusion
center to minimize inference error.

TYPE-BASED MULTIPLE ACCESS
A crucial observation is that the estimator does not
need to know the raw data Xi to achieve the best
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[FIG2] Distributed estimation over multiaccess fading channels.
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performance; it needs only sufficient statistics. It is for this rea-
son that the classical layered approach that focuses on retrieving
data Xi is not appropriate for such application specific designs.

In estimating the unknown parameter θ, a sufficient statistic is
the type or the empirical measure [41], [82]. Suppose that the meas-
urement Xi assumes a value from a finite alphabet X of size k. The
type of x is the k-dim probability vector p̃ = (1/n)(N1, . . . , Nk),

where Nj is the number of nodes that observe j.
What we need is a data-centric MAC that allocates network

resources, not to individual sensor, but to data types. The so-
called TBMA [44], [45] is an orthogonal transmission scheme
that integrates transmission at the PHY layer with the applica-
tion layer detection and estimation performance. Specifically,
consider a set of orthonormal waveforms {u(t; 1), . . . , u(t; k)},
one for each possible measurement value. If the ith sensor has
the measurement x, it transmits si(t; x) = √

Eu(t; x) . The
received signal at the access point is modeled as

z(t) =
n∑

i=1

√
Ehi(t) ∗ u(t; xi) + v(t). (2)

Note that all nodes with the same measurement transmit the
same waveform simultaneously.

The advantage of the above scheme is clear under the ideal
conditions when all sensors are synchronized and there is no
fading, i.e., hi(t) = 1. In this case (2) simplifies to

z(t) =
k∑

j=1

√
ENju(t; j) + v(t).

Suppose that the access point passes z(t) through the bank of
matched filters {u∗(−t; 1), · · · , u∗(−t; k)} and samples their
output at t = 0. In this case, signals corresponding to the same
data measurement add coherently, and the received signal vec-
tor, scaled by 1/

√
En, has the form 

y = 1
n
(N1, . . . , Nk) + (v1, . . . , vk)

=: p̃ + v, ṽ ∼ N
(

0,
σ 2

2En2 I

)
.

It is apparent that the received signal vector y converges to the
sufficient statistic p̃ in distribution.

Unfortunately, the ML estimator based on y = (y1, . . . , yn)

is complicated, and the exact ML estimator is not tractable. In
[45], an alternative estimator is proposed that is a weighted least
squares matching of the empirical measure (type) with the like-
lihood function

θ̂TBMA = arg min
θ

k∑
i=1

(pθ (i ) − yi)
2

pθ (i )
. (3)

The asymptotic optimality of synchronous TBMA, along with the
asymptotic ML estimator (3) has been established in [45] that,
for Xi

i.i.d.∼ pθ , TBMA together with the estimator in (3) is asymp-
totically efficient, i.e.,

θ̂TBMA →θ in probability,

√
n(θ̂ − θ) →N

(
0,

1
I(θ)

)
in distribution,

where I(θ) is the Fisher information contained in x. This result
shows that the asymptotic performance of TBMA is the same as
if the access point had direct access to sensor measurements.

CROSS-LAYER DESIGN AND ROBUSTNESS
While cross-layer design can provide significant performance gain
by removing barriers that partition the design space, care must be
taken to guard against unintended consequences [83]; a jointly
optimized scheme may be less robust against modeling errors.

As an example, consider the case when TBMA is not com-
pletely synchronized, and the wireless channel is subject to fad-
ing. It turns out that the gain of TBMA over TDMA (or any
user-orthogonal schemes) is affected considerably by channel fad-
ing and synchronization. Consider specifically the case when the
channel hi is random with mean µh and variance σ 2

h . It can be
shown that TBMA coupled with the asymptotic ML estimator has
the following behavior

θ̂ →θ in probability,

√
n(θ̂ − θ) →N


0,

1 + σ 2
h

µh

I(θ)


 in distribution.

In other words, in the presence of fading or synchronization errors,
there is a loss in performance which depends on the mean µh and
the variance σ 2

h of the fading coefficients. For zero mean channels,
the TBMA scheme fails. Are there other cross-layer schemes that
are more robust and at the same time offer much improved per-
formance and bandwidth efficiency? Likely there are (see [84] and
[85] for one approach that involves multiple collections), and these
are areas of research that require further attention.

CONCLUSIONS
In this article, we provided a signal processing perspective on dif-
ferent aspects of the sensor networking problem. It is our hope
that by exploring and illuminating the connection and interplay
between signal processing and networking, research efforts made
by these two independently evolving communities can be joined
together to advance the fundamental theory of sensor networks.

While we recognize the potential benefit of an integrated
approach to sensor networks, we are also aware that an inte-
grated design may lead to unintended consequences [83]. For
example, security may be compromised by a cross-layer design:
attackers may be able to exploit the cross-layer interactions, and
the compartmentalized security provided by a layered design is
lost [86]. Although not discussed in this article, authentication
of data and sender is crucial in sensor networks. Security must
be explicitly taken into account in the integrated design of sen-
sor networks and should not be an add-on. Nevertheless, given
that sensor networks are deployed for specific applications,
many of which are signal processing in nature, the interplay of



signal processing and networking in the context of sensor net-
works deserves attention and careful examination.
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