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We consider distributed information retrieval for sensor networks with cluster heads or mobile access points. The performance
metric used in the design is energy efficiency defined as the ratio of the average number of bits reliably retrieved by the access point
to the total amount of energy consumed. A distributed opportunistic transmission protocol is proposed using a combination of
carrier sensing and backoff strategy that incorporates channel state information (CSI) of individual sensors. By selecting a set
of sensors with the best channel states to transmit, the proposed protocol achieves the upper bound on energy efficiency when
the signal propagation delay is negligible. For networks with substantial propagation delays, a backoff function optimized for
energy efficiency is proposed. The design of this backoff function utilizes properties of extreme statistics and is shown to have mild
performance loss in practical scenarios. We also demonstrate that opportunistic strategies that use CSI may not be optimal when
channel acquisition at individual sensors consumes substantial energy. We show further that there is an optimal sensor density
for which the opportunistic information retrieval is the most energy efficient. This observation leads to the design of the optimal
sensor duty cycle.
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1. INTRODUCTION

A key component in the design of sensor networks is the
process by which information is retrieved from sensors. In
an ad hoc sensor network with cluster heads/gateway nodes,
sensors send their packets to their cluster heads using a cer-
tain transmission protocol [1, 2, 3]. For sensor networks with
mobile access [4, 5], data are collected directly by the mobile
access points (see Figure 1). In both cases, a population of
sensors (those in the same coverage area of an access point)
must share a common wireless channel. Thus, an informa-
tion retrieval protocol that determines which sensors should
transmit and the rates of transmissions needs to be designed
for efficient channel utilization.

Distributed information retrieval allows each sensor, by
itself, to determine whether it should transmit and the rate
of transmission. One such example is ALOHA in which each
sensor flips a coin (possibly biased by its channel state) to
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determine whether it should transmit [6, 7]. Another exam-
ple is a fixed TDMA schedule by which each sensor trans-
mits in a predetermined time slot. A centralized protocol,
in contrast, requires the scheduling by the access point. A
particularly relevant technique is the so-called opportunistic
scheduling [8, 9] by which the access point determines which
sensor should transmit according to the channel states of the
sensors. In this paper, we are interested in distributed infor-
mation retrieval which, in the context of sensor networks, has
many advantages: less overhead, more robust against node
failures, and possibly more energy efficient.

1.1. Energy-efficient opportunistic transmission

By opportunistic transmission we mean that the informa-
tion retrieval protocol utilizes the channel state information
(CSI). Specifically, suppose that the channel states of a set of
activated sensors are obtained. An opportunistic transmis-
sion protocol chooses, according to some criterion, a subset
of activated sensors to transmit and determines their trans-
mission rates. Knopp and Humblet [8] showed that, to max-
imize the sum capacity under the average power constraint,
the opportunistic transmission that allows a single user with
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Figure 1: Information retrieval in sensor networks.

the best channel to transmit is optimal. Other opportunistic
schemes include [6, 7, 9, 10, 11, 12, 13] and the references
therein.

The idea of opportunistic information retrieval, at the
first glance, is appealing for sensor networks where energy
consumption is of primary concern. If the channel realiza-
tion of a sensor is favorable, the sensor can transmit at a
lower power level for the same rate or at a higher rate us-
ing the same power. If the sensor has a poor channel, on
the other hand, it is better that the sensor saves the energy
by not transmitting (and not creating interference to oth-
ers). What is missing in this line of argument, however, is the
cost of obtaining channel states and the cost of determining
opportunistic scheduling. If it takes a considerable amount
of energy to estimate the channel at each sensor and if de-
termining the set of sensors with the best channels requires
additional communications among sensors, it is no longer
obvious that an opportunistic information retrieval is more
energy efficient than a strategy—for example, using a prede-
termined schedule—that does not require the channel state
information.

It is necessary at this point to specify the performance
metric used in the design of information retrieval protocols.
For sensor networks, we use energy efficiency (bits/Joule) de-
fined by the ratio of the expected total number of bits reliably
received at the access point and the total energy consumed.
Here we will include both the energy radiated at the trans-
mitting antenna and the energy consumed in listening, com-
putation, and channel acquisition (when an opportunistic
strategy is used). For sensor networks, it has been widely rec-
ognized that energy consumption beyond transmission can
be substantial [3, 4, 14].

Using energy efficiency as the metric, we aim to address
the following questions. If channel acquisition consumes en-
ergy, is opportunistic transmission strategy optimal? What
would be an energy-efficient distributed opportunistic infor-
mation retrieval? What network parameters affect the energy
efficiency? Can these parameters be designed optimally?

While it is debatable whether the information theoretic
metric of energy efficiency is appropriate for sensor net-
works, our goal is to gain insights into the above fundamental
questions. It should also be emphasized that the distributed
opportunistic protocol developed in this paper applies also
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Figure 2: Energy-efficiency characteristics.

to noninformation theoretic metrics such as throughput and
throughput per unit cost.

1.2. Summary of results

The contribution of this paper is twofold. First, we demon-
strate that when the cost of channel acquisition is small as
compared to the energy consumed in transmission, the op-
portunistic transmission is optimal. However, when the aver-
age number of activated sensors exceeds a certain threshold,
the opportunistic strategy looses its optimality; its energy ef-
ficiency approaches zero as the average number of activated
sensors approaches infinity. Figure 2 illustrates the generic
characteristics of the energy efficiency of the opportunistic
transmission where Λ denotes the average number of acti-
vated sensors. When Λ is small, the gain in sum capacity due
to the use of the best channel dominates the increase in en-
ergy consumption. As Λ increases beyond a certain value, the
energy cost for acquiring the channel state of every activated
sensor overrides the improvement in sum capacity. It is thus
critical that the average number Λ of activated sensors be op-
timized. In Section 5, we study possible schemes of control-
ling Λ by the design of the sensor duty cycle.

Second, we propose opportunistic carrier sensing—a dis-
tributed protocol that achieves a performance upper bound
assumed by the centralized opportunistic transmission. The
key idea is to incorporate local CSI into the backoff strat-
egy of carrier sensing. Specifically, a decreasing function is
used to map the channel state to the backoff time. Each sen-
sor, after measuring its channel, generates the backoff time
according to this backoff function. When the propagation
delay is negligible, the decreasing property of the backoff
function ensures that the sensor with the best channel state



Opportunistic Carrier Sensing for Energy Efficiency 233

seizes the channel. To minimize the performance loss caused
by propagation delay, the backoff function is constructed to
balance the energy consumed in carrier sensing and the en-
ergy wasted in collision. This protocol also provides a dis-
tributed solution to the general problem of finding the max-
imum/minimum.

1.3. Related work
The metric of energy efficiency considered in this paper can
be traced back to capacity per unit cost [15, 16]. For sen-
sor networks, such a metric captures important design trade-
offs. However, the literature on using this metric for sensor
networks is scarce. Our results explicitly include energy con-
sumed in channel acquisition and listening.

The idea of using CSI was sparked by the work of Knopp
and Humblet [8]. Exploiting CSI induces multiuser diver-
sity as the performance increases with the number of users
[9, 10]. Throughput optimal scheduling for downlink over
time-varying channels by a central controller has been con-
sidered in [17, 18], all assuming the knowledge of the chan-
nel states at no cost. Decentralized power allocation based on
channel states was investigated by Telatar and Shamai under
the metric of sum capacity [12]. Viswanath et al. [19] have
shown the asymptotic optimality of a decentralized power
control scheme for a multiaccess fading channel that uses
CDMA with an optimal receiver. The effect of decentralized
power control on the sum capacity of CDMA with linear re-
ceivers and single-user decoders was studied by Shamai and
Verdú in [20]. All the work along this line uses rate, not the
energy efficiency, as the performance metric. Using channel
state information in random access has been considered in
[6, 7, 21]. Qin and Berry, in particular, aimed to schedule
the sensor with the best channel to transmit by a distributed
protocol—channel-aware ALOHA [7]. The throughput of
channel-aware ALOHA, however, is limited by the efficiency
of the conventional ALOHA protocol.

1.4. Organization of the paper
In Section 2, we state the network model. The performance
of the opportunistic transmission is addressed in Section 3
where we obtain a performance upper bound and character-
ize the optimal number of transmitting sensors in the oppor-
tunistic transmission. In Section 4, we propose opportunistic
carrier sensing. A backoff function is constructed and its ro-
bustness to propagation delay is demonstrated. In Section 5,
we focus on the optimality of the opportunistic transmission.
Optimal sensor activation schemes are discussed. Section 6
concludes the paper.

2. THE NETWORK MODEL

2.1. The sensor network
We assume that the sensor nodes form a two-dimensional
Poisson field1 with mean λ. The number M of active sensors

1As shown in [22], the difference (in terms of network connectivity) be-
tween a Poisson field and a uniformly distributed random field is negligible
when the number of nodes is large. For the simplicity of the analysis, we
assume a Poisson distributed sensor network.

that share the wireless channel to an access point is thus a
Poisson random variable with mean Λ = aλ where a denotes
the coverage area of the mobile access point or the size of the
cluster, that is,

P[M = m] = e−ΛmΛ

m!
. (1)

For a sensor network with mobile access, we consider a
single access point. For a sensor network under the structure
of clusters, we focus on the information retrieval within one
cluster. We assume that there is no interference among adja-
cent clusters (which can be achieved by, for example, assign-
ing different frequencies to adjacent clusters) and the sen-
sors within the cluster transmit directly to the cluster head
as considered in [3]. Thus, information retrieval for a sensor
network with mobile access or cluster heads can be modeled
as a many-to-one communication problem. Aiming at pro-
viding insights to fundamental questions on opportunistic
transmission, we further assume that sensors within the cov-
erage area of the mobile access point or the same cluster can
hear each other’s transmission.

2.2. The wireless fading channel

The physical channel between an active sensor and the access
point is subject to flat Rayleigh fading with a block length of
T seconds, which is also the length of transmission slot. The
channel is thus constant within each slot and varies indepen-
dently from slot to slot.

Consider the first slot where n nodes transmit simulta-
neously. The received signal y(t) at the access point can be
written as

y(t) =
n∑
i=1

hixi(t) + n(t), 0 ≤ t ≤ T , (2)

where hi is the channel fading process experienced by sensor
i, n(t) the white Gaussian noise with power spectrum density
N0/2, and xi(t) the transmitted signal with fixed power Pout.
We point out that the power constraint used here is differ-
ent from the long-term average power constraint considered
in [8]. We assume that sensors can only transmit at a fixed
power level Pout and do not have the capability of allocating
power over time. Define

ρ � Pout

WN0
. (3)

Let

γi �
∣∣hi∣∣2 ∼ exp

(
γi
)

(4)

denote the channel gain from sensor i to the access point.
Under independent Rayleigh fading, γi is exponentially dis-
tributed with mean γi. The average received SNR of sensor i
is thus given by ργi.
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2.3. The energy consumption model

In each slot, energy consumed by active sensors may come
from three operations: transmission, reception, and schedul-
ing.

Let Er and Et denote, respectively, total energy consumed
in receiving and transmitting in one slot. We have [14]

Er = E
[
Prx

M∑
i=1

Trx(i)

]
, (5)

Et = E
[
Ptx

M∑
i=1

Ttx(i)

]
, (6)

where the expectation is with respect to M, Trx(i), and Ttx(i)
are the average reception and transmission time of node i,
Prx is the sensor’s receiver circuitry power, Ptx is the power
consumed in transmission which consists of transmitter cir-
cuitry power and antenna output power Pout.

In the distributed opportunistic transmission, active sen-
sors perform synchronization and channel acquisition using
a beacon signal broadcast by the access point2 and determine
who should transmit and at what rate. The expected total cost
Ec of scheduling transmissions based on the channel states of
the active sensors is lower bounded by

Ec ≥ Λec, (7)

where ec is the amount of energy consumed by one sen-
sor in estimating its channel state from the beacon sig-
nal. This lower bound holds for both centralized and dis-
tributed implementations of the opportunistic transmission.
It is achieved when the active sensors, each with access only to
its own channel state, can determine the set of transmitting
sensors at no cost. We show in Section 4 that when the prop-
agation delay among active sensors is negligible, the schedul-
ing cost of the proposed opportunistic protocol achieves the
lower bound given in (7).

3. OPPORTUNISTIC TRANSMISSION FOR
ENERGY EFFICIENCY

In this section, we address the performance of the oppor-
tunistic transmission under the metric of energy efficiency.
As a performance measure, energy efficiency is first defined
and the underlying coding scheme specified. We then obtain
an upper bound on the performance of the opportunistic
transmission and characterize the optimal number of trans-
mitting sensors.

3.1. Sum capacity and coding scheme

Given that the channel fading process hi is independent
among sensors, and strictly stationary and ergodic, the sum

2We assume reciprocity. The channel gain from a sensor to the access
point is the same as that from the access point to the sensor.

capacity achieved by an information retrieval protocol which
enables n sensors in each slot is given by [23]

R =WE

[
log

(
1 + ρ

n∑
i=1

γi

)]
, (8)

where W is the transmission bandwidth and the expectation
is over the fading process γi (see (4)). To achieve this rate,
the CSI is used in decoding. The information rate is constant
over time and each codeword sees a large number of channel
realizations.

An alternative coding scheme is to use different transmis-
sion rates according to the channel states of the transmitting
sensors. In this case, each codeword experiences only one
channel realization, resulting in a smaller coding delay. When
the block length T is sufficiently large, the achievable sum
rate averaged over time can be approximated by (8). Note
that using a variable information rate in each slot requires
the CSI in both encoding and decoding. If more than one
sensor is enabled for transmission, each transmitting sensor
must know not only its own channel state, but also the chan-
nel states of other simultaneously transmitting sensors in or-
der to determine the rate of transmission. In Section 4, we
show that with the proposed opportunistic carrier sensing,
each transmitting sensor obtains the channel states of other
sensors at no extra cost. The proposed protocol is thus ap-
plicable to both coding schemes. Without loss of generality,
we assume, for the rest of the paper, this alternative coding
scheme which uses variable information rate. We point out
that under this coding scheme, (8) is only an approximation
to the achievable sum rate. A more rigorous formulation is
to use error exponents [15].

3.2. n-TDMA

As a benchmark, we first give an expression of energy effi-
ciency for a predetermined scheduling where n sensors are
scheduled for transmission in each slot. At the beginning of
each slot, n sensors wake up, measure their channel states,
and transmit. Referred to as n-TDMA, this scheme with op-
timal n has the energy efficiency

STDMA = max
n

WTE
[

log
(
1 + ρ

∑n
i=1 γi

)]
nec + nTPtx

, (9)

where expectation3 is over M and {γi}ni=1. Since n � Λ in
general, we have ignored the rare event of M < n. The above
optimization can be obtained numerically.

3.3. Opportunistic transmission

3.3.1. A performance upper bound

With the opportunistic strategy, n sensors with the best chan-

nels are enabled for transmission in each slot. Let γ(i)
M denote

3To be precise, the numerator of (9) should be written as

WTEM{Eγ(i) [log(1 + ρ
∑min{n,m}

i=1 γ(i)
m )|M = m]}.
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the ith best channel gain among M sensors. The energy effi-
ciency of the opportunistic strategy with optimal n is

Sopt = max
n

WTE
[

log
(

1 + ρ
∑n

i=1 γ
(i)
M

)]
Ec + nTPtx

, (10)

where expectation is over M and {γ(i)
M }ni=1. Using the lower

bound on Ec given in (7), we obtain a performance upper
bound for the opportunistic strategy:

Sopt ≤ max
n

WTE
[

log
(

1 + ρ
∑n

i=1 γ
(i)
M

)]
Λec + nTPtx

. (11)

3.3.2. The optimal number of transmitting sensors

Since the performance upper bound given in (11) is achieved
by the opportunistic carrier sensing proposed in Section 4,
we can use this upper bound to study the optimal number
n∗ of transmitting sensors and the optimality of the oppor-
tunistic transmission.

It has been shown by Knopp and Humblet [8] that the
optimal transmission scheme for maximizing sum capacity
under a long-term average power constraint is to enable only
one sensor (the one with the best channel) to transmit. Un-
der the metric of energy efficiency with a fixed transmission
power, however, allowing more than one transmission may
be optimal when the cost in channel acquisition becomes
substantial.

Proposition 1. For a fixed slot length T , transmission power
Ptx, and the channel acquisition cost ec, the optimal number
n∗ of transmitting sensors for the opportunistic transmission is
given by

n∗ = 1 if Λ <
TPtx

(
2C1 − C2

)
ec
(
C2 − C1

) ,

n∗ > 1 otherwise,

(12)

where Cn =WTE[log(1 + ρ
∑n

i=1 γ
(i)
M )].

For the proof of Proposition 1, see Appendix A.
In Figure 3, we plot the energy efficiency of the oppor-

tunistic transmission for different numbers n of transmitting
sensors. In Figure 3a, the average number Λ of active sensors
is 500 while, in Figure 3b, it is set to 5 000. We can see that
n∗ increases from 1 to 2 when Λ increases. The intuition be-
hind this is that the cost in channel acquisition dominates
when Λ = 5 000; allowing one more transmission improves
the sum rate without inducing significant increase in energy
consumption. The performance of n-TDMA is also plotted
in Figure 3 for comparison. For this simulation setup, the op-
timal number of transmitting sensors for n-TDMA equals 1.
We observe that the opportunistic transmission is inferior to
the simple predetermined scheduling at Λ = 5 000. Indeed,
we show in Section 5 that the opportunistic transmission
strategy looses its optimality when Λ exceeds a threshold.

4. OPPORTUNISTIC CARRIER SENSING

In this section, we propose opportunistic carrier sensing, a
distributed protocol whose performance approaches to the
upper bound of the opportunistic strategy given in (11). We
first present the basic idea of the opportunistic carrier sens-
ing under the assumption of negligible propagation delay
among active sensors. In Section 4.2, we study the design
of the backoff function to minimize the performance loss
caused by propagation delay.

4.1. The basic idea

We now present the basic idea of the opportunistic carrier
sensing by considering an idealistic scenario. We assume that
the transmission of one sensor is immediately detected by
other active sensors. In the next subsection, we discuss how
to circumvent the propagation delay among active sensors.

The key idea of opportunistic carrier sensing is to ex-
ploit CSI in the backoff strategy of carrier sensing. First con-
sider n∗ = 1, that is, in each slot, only the sensor with the
best channel transmits. After each active sensor measures
its channel gain γi using the beacon of the access point, it
chooses a backoff τ based on a predetermined function f (γ)
which maps the channel state to a backoff time and then lis-
tens to the channel. A sensor will transmit with its chosen
backoff delay if and only if no one transmits before its back-
off time expires. If f (γ) is chosen to be a strictly decreasing
function of γ as shown in Figure 4, this opportunistic carrier
sensing will ensure that only the sensor with the best chan-
nel transmits. Under the idealistic scenario where the trans-
mission of one sensor is immediately detected by other ac-
tive sensors, f (γ) can be any decreasing function with range
[0, τmax], where τmax is the maximum backoff. Since τmax

can be chosen as any positive number, the time required for
each sensor listening to the channel can be arbitrarily short.
Hence, energy consumed in each slot comes only from each
sensor estimating its own channel state (the lower bound on
Ec given in (7)) and the transmission by one sensor; oppor-
tunistic carrier sensing thus achieves the performance upper
bound of the opportunistic strategy.

We now consider n∗ > 1. If the energy detector of each
sensor is sensitive enough to distinguish the number of si-
multaneous transmissions, the opportunistic carrier sens-
ing protocol stated above can be directly applied—a sensor
transmits with its chosen backoff if and only if the number
of transmissions at that time instant is smaller than n∗. Note
that by observing the time instant τ at which the number of
simultaneous transmissions increases (energy-level jumps)
and mapping this time instant back to the channel gain us-
ing γ = f −1(τ), a sensor obtains the channel states of other
transmitting sensors and can thus determine its transmission
rate. Note that the channel gain of a transmitting sensor is
learned by measuring the backoff of the transmission, not
the signal strength.

If, however, sensors can not obtain the number of simul-
taneous transmissions, we generalize the protocol as follows.
We partition each slot into two segments: carrier sensing and
information transmission (see Figure 5). During the carrier
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Figure 3: The optimal number n∗ of transmitting sensors (W = 1 kHz, ργi = 3 dB, T = 0.01 second, Ptx = 0.181 W, ec = 1.8 nJ): (a)
Λ = 500 and (b) Λ = 5 000.

γγ1γ2

τ1

τ2

τmax

τ = f (γ)

Figure 4: Opportunistic carrier sensing.

sensing period, sensors transmit, with backoff delay deter-
mined by f (γ), a beacon signal with short duration. A sen-
sor transmits a beacon if and only if the number of received
beacon signals is smaller than n∗. By measuring the time in-
stant at which each beacon signal is transmitted, those n∗

sensors with the best channels can also obtain all n∗ chan-
nel states from f −1(τ) and thus encode their messages ac-
cordingly. Shown in Figure 5 is an example with n∗ = 2.
During the carrier sensing segment [0, τmax], two beacon sig-
nals are transmitted at τ1 and τ2 by two sensors with the best
channel gains. Based on τ1, τ2, and f −1(τ), these two sensors
obtain each other’s channel state (see Figure 4). They then
encode their messages for transmissions in the second seg-
ment of the slot. One possible encoding scheme, as shown
in Figure 5, is based on the idea of successive decoding. The
sensor with the higher channel gain γ1 encodes its message
at rate W log(1 + ργ1) as if it was the only transmitting node.

Beacon

Rate W log(1 + ργ1)

Rate W log(1 + ρ′γ2)

0 τ1 τ2 τmax T

Figure 5: Opportunistic carrier sensing for n∗ = 2.

The other sensor with channel gain γ2 encodes its message by
treating the transmission from the sensor with channel γ1 as
noise. It transmits at rate W log(1 + ρ′γ1) where

ρ′ = Pout

N0W + Poutγ1
. (13)

We point out that the idea of opportunistic carrier sens-
ing provides a distributed solution to the general problem
of finding maximum/minimum. By substituting the channel
gain γ with, for example, the temperature measured by each
sensor, the distance of each sensor to a particular location,
or the residual energy of each sensor, we can retrieve infor-
mation of interest (the highest/lowest temperature, the mea-
surement closest/farthest to a location) from sensors of inter-
est (those with the highest energy level or those with the best
channel gain) in a distributed and energy-efficient fashion.



Opportunistic Carrier Sensing for Energy Efficiency 237

γγuγl

T

τmax

τ = f (γ)

logΛ

Figure 6: Backoff function under significant propagation delay.

4.2. Backoff design under significant delay

We now generalize the basic idea of opportunistic carrier
sensing to scenarios with significant delay which may include
both the propagation delay and the time spent in the detec-
tion of transmissions. Without loss of generality, we focus on
the case of n∗ = 1.

In the idealistic case considered in the previous subsec-
tion, energy consumed in carrier sensing is negligible due to
the arbitrarily small carrier sensing time τmax. Furthermore,
using any decreasing function as the backoff function f (γ)
avoids collision, an event where several nodes transmit si-
multaneously while no information is received at the access
point. When there is substantial delay, however, collision and
energy consumed by carrier sensing4 are inevitable. To main-
tain the optimal performance achieved under the idealistic
scenario, f (γ) needs to be designed judiciously to minimize
both the occurrence of collision and the energy consumed in
carrier sensing. Unfortunately, these are two conflicting ob-
jectives. On one hand, choosing a larger τmax makes it more
likely to map channel gains to well-separated backoff times,
thus reducing collisions. On the other hand, a larger τmax re-
sults in less transmission time and more energy consumption
of carrier sensing.

To balance the tradeoff between collision and energy con-
sumption of carrier sensing, we propose f (γ) as illustrated in
Figure 6. This backoff scheme is a linear function on a finite
interval [γl, γu) where the channel gain is mapped to a back-
off time in (0, τmax]. Sensors with channel gains greater than
γu transmit without backoff (τ = 0) while sensors with chan-
nel gains smaller than γl turn off their radios until next slot
(τ = T), without even participating in the carrier sensing
process.

The proposed backoff function is completely determined
by γl, γu, and τmax. The choice of a finite γu allows better
resolution among highly likely channel realizations. The op-
tion of a nonzero γl avoids the listening cost of sensors whose
channels are unlikely to be the best. For a relatively large Λ,
a large percentage of active sensors can be freed of carrier

4Listening to the channel requires the receiver being turned on, which
consumes energy as given in (5).

Opportunistic carrier sensing with/without delay
Opportunistic carrier sensing with delay
n-TDMA

0 50 100 150 200 250 300 350 400 450 500

r

0.4
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1.2

1.4

1.6

1.8

2
×104

S

Figure 7: Performance of opportunistic carrier sensing under sig-
nificant delay (Λ = 100, W = 1 kHz, ργi = 3 dB, T = 0.01 second,
Ptx = 0.181 W, Prx = 0.18 W, ec = 1.8 nJ).

sensing cost with a carefully chosen γl. The maximum back-
off time τmax is chosen to balance collision and energy con-
sumption of carrier sensing. It is jointly optimized with γl
and γu to maximize energy efficiency:

{
γ∗l , γ∗u , τ∗max

} = arg max S
(
γl, γu, τmax

)
. (14)

The optimal {γ∗l , γ∗u , τ∗max} can be obtained via numeri-
cal evaluation or simulations. To narrow the search range
of γl and γu, asymptotic extreme-order statistics given in
Lemma 1 (see Section 5.1) can be exploited. For a relatively
large Λ, the best channel gain γ(1) is on the order of logΛ.

We now consider a simulation example to evaluate the
performance of opportunistic carrier sensing with the back-
off function f (γ) given in Figure 6 using numerically opti-
mized parameters {γ∗l , γ∗u , τ∗max}. We focus on information
retrieval by a mobile access point and model the coverage
area of the mobile access point as a disk with radius r (see
Figure 1). The maximum propagation delay β is then given
by

β = 2r
vl

, (15)

where vl is the speed of light.5 Shown in Figure 7 is the energy
efficiency of opportunistic carrier sensing as a function of
the radius r of the coverage area which determines the maxi-
mum propagation delay. Compared with the performance in
the ideal scenario (no propagation delay), the performance
of opportunistic carrier sensing degrades gracefully with

5We have ignored the delay in the detection of transmission at sensor
nodes. It can be easily accommodated by adding a constant to the propaga-
tion delay.
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propagation delay. Even with a coverage radius of 500 me-
ters, the performance degradation due to propagation delay
is less than 5%.

5. OPTIMAL SENSOR ACTIVATION

In this section, we demonstrate that the energy efficiency of
the opportunistic transmission vanishes as the number Λ of
active sensors approaches infinity. Possible schemes for opti-
mizing the number of active sensors are discussed.

5.1. Tradeoff between sum capacity
and energy consumption

Since the extreme value of i.i.d. samples increases with the
sample size, it is easy to show that the sum capacity achieved
by n sensors with the best channels increases with Λ. Unfor-
tunately, larger Λ also leads to higher energy consumption
in channel acquisition (see (7)). Proposition 2 shows that the
gain in sum capacity does not always justify the cost in ob-
taining the channel states.

Proposition 2. For a fixed slot length T , transmission power
Ptx, and the channel acquisition cost ec > 0,

lim
Λ→∞

Sopt = 0. (16)

A direct consequence of Proposition 2 is that, as summa-
rized in Corollary 1, the opportunistic strategy looses its op-
timality when Λ exceeds a threshold.

Corollary 1. There exists Λ0 <∞ such that Sopt < STDMA when
Λ > Λ0.

The proof (see Appendix B) of Proposition 2 is based on
the following result on asymptotic extreme-order statistics
[24].

Lemma 1. Let X1,X2, . . . be i.i.d. random variables with con-
tinuous distribution function F(x). Let x0 denote the upper
boundary, possibly +∞, of the distribution: x0 � sup{x :
F(x) < 1}. If there exists a function R(t) such that for all x,

lim
t→x0

1− F
(
t + xR(t)

)
1− F(t)

= e−x, (17)

then

X (1)
m − am
bm

d−−→ exp
{− e−x

}
, (18)

where X (1)
m = maxi≤m Xi, 1− F(am) = 1/m, bm = R(am), and

d−→ denotes convergence in distribution.

Common fading distributions such as Rayleigh and
Ricean satisfy the assumptions of Lemma 1. For Rayleigh fad-
ing considered in this paper, we have am = logm and bm = 1,
that is,

X (1)
m − logm

d−−→ exp
{− e−x

}
. (19)
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Figure 8: Tradeoff between sum capacity and energy consumption
(W = 1 kHz, ργi = 3 dB, T = 0.01 second, Ptx = 0.181 W, ec =
1.8 nJ).

Shown in Figure 8 are simulation results on the energy
efficiency of the opportunistic transmission as compared to
the predetermined scheduling. Since both the sum rate and
the energy consumption of n-TDMA are independent of Λ,
the energy efficiency is constant overΛ. For the opportunistic
strategy, the energy efficiency increases with Λ when Λ is rel-
atively small. In this region, the energy consumption is dom-
inated by transmission; the increase in the cost of channel ac-
quisition does not significantly affect the total energy expen-
diture. The energy efficiency thus improves as the sum ca-
pacity increases with Λ. When Λ increases beyond 100 where
the cost in channel acquisition contributes more than 10%
of the total energy expenditure, the increase in energy con-
sumption overrides the improvement in sum rate; the energy
efficiency starts to decrease. Eventually, the gain in sum ca-
pacity achieved by exploiting CSI can no longer justify the
cost in obtaining CSI, and the opportunistic strategy is infe-
rior to the predetermined scheduling.

5.2. The optimal number of active sensors

As shown in Figure 8, the performance of the opportunistic
transmission depends on the average number of active sen-
sors’s. To achieve the best performance of the opportunistic
strategy, the average number Λ of active sensors should be
carefully chosen.

The average number of active sensors can be controlled
via the sensor duty cycle or the size of the coverage area of
the mobile access point (or the cluster). Assume that each
sensor with probability p wakes up independently to detect
the beacon signal of the access point. For a coverage area of
size a, the average number of active sensors is given by Λ =
apλ, where λ is the node density defined in Section 2. The
average number of active sensors can thus be controlled by
varying either a or the duty cycle p.
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Figure 9: The optimal number of active sensors (W = 1 kHz, T =
0.01 second, Ptx = 0.181 W, ec = 1.8 nJ).

In Figure 9, we plot the optimal average number Λ∗ of
the active sensors as a function of the average SNR. Without
loss of generality, we normalize γi to 1. The average received
SNR is thus given by ρ. We observe that Λ∗ is a decreasing
function of ρ. The reason for this is that the larger the average
SNR, the smaller the impact of γ(1) on the sum rate (see (10)).
Thus, the threshold beyond which the channel acquisition
cost overrides the gain in sum rate decreases with ρ, resulting
in decreasing Λ∗.

6. CONCLUSION

In this paper, we focus on distributed information retrieval
in wireless sensor networks. Energy efficiency is introduced
as the performance metric. Measured in bits per Joule, this
metric captures a major design constraint—energy—of sen-
sor networks.

We examine the performance of the opportunistic trans-
mission which exploits CSI for transmission scheduling. Tak-
ing into account energy consumed in channel acquisition, we
demonstrate that sum-rate improvement achieved by oppor-
tunistic transmission does not always justify the cost in chan-
nel acquisition; there exists a threshold of the average num-
ber of activated sensor nodes beyond which the opportunis-
tic strategy looses its optimality. Sensor activation schemes
are discussed to optimize the energy efficiency of the oppor-
tunistic transmission.

We propose a distributed opportunistic transmission
protocol that achieves the performance upper bound as-
sumed by the centralized opportunistic scheduler. Referred
to as opportunistic carrier sensing, the proposed protocol
incorporates CSI into the backoff strategy of carrier sens-
ing. A backoff function which maps channel state to backoff
time is constructed for scenarios with substantial propaga-
tion delay. The performance of opportunistic carrier sens-
ing with the proposed backoff function degrades gracefully
with propagation delay. The proposed protocol also provides
a distributed solution to the general problem of finding the
maximum/minimum.

A number of issues are not addressed in this paper. We
have used the information theoretic metric of energy effi-
ciency that implicitly assumes that data from different sen-
sors are independent. For applications in which data are
highly correlated, distributed compression techniques may
be necessary [25]. Fairness in transmission is another issue
that needs to be considered in practice. For sensor networks
with mobile access points or networks with randomly ro-
tated cluster heads, the probability of transmission can be
made uniform. For networks with fixed cluster heads, sensors
closer to the cluster head tend to have stronger channel, thus
transmit more often. This, however, can be easily equalized
by using the normalized channel gain in the backoff strategy.

APPENDICES

A. PROOF OF PROPOSITION 1

Let Sn denote the energy efficiency of the opportunistic strat-
egy which enables n sensors with the best channels in each
slot. We have

Sn = Cn

Λec + nTPtx
. (A.1)

To prove Proposition 1, we need to show that for Λ <
TPtx(2C1 − C2)/ec(C2 − C1), S1 ≥ Sn for all n. Since

C1

Λec + TPtx
≥ Cn

Λec + nTPtx

=⇒ Λec
(
Cn − C1

)
≤ TPtx

(
nC1 − Cn

)
,

(A.2)

we only need to show that there exists Λ > 0 that satisfies
(A.2). This reduces to the positiveness of nC1−Cn which fol-
lows directly from the concavity of the logarithm function.

B. PROOF OF PROPOSITION 2

Let Sopt(m) denote the energy efficiency of the opportunistic
transmission where exactly m sensors are active in each slot.
We first show, based on Lemma 1, that limm→∞ Sopt(m) = 0:

lim
m→∞ Sopt(m) = lim

m→∞ max
1≤n≤m

E
[
WT log

(
1 + ρ

∑n
i=1 γ

(i)
m

)]
mec + nTPtx

(B.1)

≤ lim
m→∞

E
[
WT log

(
1 + mργ(1)

m

)]
mec

(B.2)

≤ lim
m→∞

WT log
(

1 + mρE
[
γ(1)
m

])
mec

(B.3)

≤ lim
m→∞

WT log
(
1 + m2ρ

)
mec

(B.4)

= 0, (B.5)
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where γ(i)
m denotes the ith-order statistics over m samples; the

expectations in (B.1) and (B.2) are with respect to {γ(i)
m }ni=1

and γ(1)
m , respectively. Jensen’s inequality is used to obtain

(B.3), and Lemma 1, which shows that γ(1)
m ∼ log(m) <

m, for large m, is used to obtain (B.4). Combining (B.5)
and the fact that Sopt(m) > 0 for all m, we conclude that
limm→∞ Sopt(m) = 0. Thus,

∀ε > 0, ∃M0 > 0, s.t. Sopt(m) < ε ∀m > M0. (B.6)

That Sopt(m) vanishes with m also implies that

∃S <∞, s.t. Sopt(m) < S ∀m. (B.7)

It is easy to show that for Poisson distributed random
variable M,

lim
Λ→∞

P
[
M ≤M0

] = lim
Λ→∞

∑M0
i=1(Λ)i/i!
eΛ

= 0. (B.8)

Thus, for ε and M0 given in (B.6), we have

∃M1 > 0, s.t. P
[
M ≤M0

]
< ε ∀Λ > M1. (B.9)

Combining (B.6), (B.7), and (B.9), we have, for Λ > M1,

Sopt =
∞∑

m=1

P[M = m]Sopt(m)

=
M0∑
m=1

P[M = m]Sopt(m) +
∞∑

m=M0+1

P[M = m]Sopt(m)

< εS + ε.
(B.10)

We thus obtain Proposition 2 from the arbitrariness of ε.
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