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Semi-Blind Collision Resolution in Random Access
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Abstract—A new signal processing based collision resolution mission protocols [13]. In general, spread spectrum transmis-
technique for random access wireless ad hoc networks is proposedsjon protocols can be classified into three major modes [15].

in this paper. Without assuming the knowledge of propagation

channels and signal waveforms, the proposed algorithm is capable

of separating colliding packets by exploiting channel diversities
and known symbols embedded in data packets. Compared with
training-based methods, the proposed algorithm requires con-
siderably fewer known symbols. This algorithm can be applied
to various spread spectrum and narrowband systems along with
existing medium access control protocols.

1) Transmitter-oriented spread spectrum transmission pro-

tocol

With this protocol, each user is assigned a unique trans-
mitting code. If the transmitter-based codes used by dif-
ferent users are orthogonal, all colliding packets can be
recovered under the assumption of perfect synchroniza-

tion and ideal channel conditions. However, if multipath

fading destroys the orthogonality or when nonorthogonal

codes are employed by the network, packet collisions

cannot be resolved at the modulation level.

I. INTRODUCTION 2) Receiver-oriented spread spectrum transmission protocol
In this case, each user is assigned a unique receiving

code; all transmissions to a particular user must use that

Index Terms—Collision resolution, random access network,
semi-blind approach.

A. Packet Collision and Multiple Packet Reception in Random

Access Networks . : . ) .
user’s spreading code. With this protocol, packet colli-
N A SLOTTED random access ad hoc network, all users  sjons cannot be completely resolved by CDMA modu-

share a common radio channel for immediate packet trans-  |ation, even if the receiver-based codes are orthogonal.

mission. A packet collision occurs when more than one user  \when more than one user transmits to a particular user in
transmits in the same slot. For conventional narrowband net-  the same slot, the packets intended for this user are lost.

works, this concurrent channel access by more than one useB) Network-wide spread spectrum transmission protocol

results in the destruction of all colliding packets. To recover the This is perhaps the simplest transmission protocol,
information in the colliding packets, they have to be retrans-  \yhere a common code, such as the time of day, is
mitted in later time slots, which has adverse effects on the net-  employed by all users in the network. This protocol

work throughput and delay. facilitates the transmission of broadcast messages, but it

One effective way of improving the performance of random  oes not provide multiaccess capability at the modulation
access networks is to introduce multiple packet reception (MPR)  |evel. The simultaneous transmission from different users
to the receivers. MPR enables correct receiving of some or all  yesuits in the destruction of all transmitted information.

colliding packets without retransmission. In addition to the di- The apove discussion shows that even under the assumption
rect throughput and delay improvement brought by the recovef¥erfect synchronization and ideal channel conditions, packet
of colliding packets, the traffic load caused by retransmissioggjisions cannot be completely resolved at the modulation level

is reduced, which further decreases the frequency of collisiQihen a common code. receiver-based codes. or nonorthogonal
occurrence. Indeed, it has been shown that MPR capability siggnsmitter-based codés are employed. '

nificantly improves the network performance [2], [3], [7], [8],
[14]. C. Collision Resolution at the Signal Processing Level

Collision resolution at the signal processing level aims to pro-
vide the MPR capability to random access networks with var-
The use of code division multiple access (CDMA) in randonous transmission protocols. Recent work by Tsatsanial.
access networks can provide MPR by properly designed traf0], [21], [24] is perhaps the first that applies signal separa-
tion techniques for collision resolution in cellular systems. This
approach relies on multiple copies of the colliding packets from
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supported in part by the National Science Foundation under Contract CGRg| of base stations. Due to the distributed nature of ad hoc net-
9804019 and the Multidisciplinary University Research Initiative (MURI) under K hat th h Lo
the Office of Naval Research Contract NO0014-00-1-0564. The associate edifi?'KS: W? CannOt assume that the same sgt_o users ar_e a_ctlve In
coordinating the review of this paper and approving it for publication was Pratonsecutive time slots. Consequently, collision resolution in ad
Michail K. Tsatsanis. _ ___hoc networks needs to be achieved on a slot-by-slot basis.
The authors are with the School of Electrical and Computer Engineering, Cor- . . . . .
Collision resolution in ad hoc networks may be achieved

nell University, Ithaca, NY 14853 (e-mail: ltong@ee.cornell.edu). . -
Publisher Item Identifier S 1053-587X(00)07678-9. by embedding known symbols in data packets. These known

B. Collision Resolution at the Modulation Level

1053-587X/00$10.00 © 2000 IEEE



ZHAO AND TONG: SEMI-BLIND COLLISION RESOLUTION 2911

symbols can be used to design training-based packet separapiacket separation. In order to reduce the number of required
algorithms. In Section Ill, we consider one such approacknown symbols, we obtain colliding packets from an innova-
where we show that the number of known symbols required bipn sequence generated from the observation by a smoothing
training-based methods is related to the number of collidimperation. Since the innovation sequence contains less interfer-
packets and their channel lengths. In heavily loaded networksce than the observation, our approach requires considerably
with severe multipath fading, the number of known symbofewer known symbols than training-based methods.

required by training-based methods can be considerablyThe rest of the paper is organized as follows. Section I
large. Incorporating a large amount of known symbols in dafaesents the system model and the assumptions used in this
packets is not efficient in bandwidth utilization, especially ipaper. In Section Ill, we present the training-based least squares
time-varying scenarios or in cases with relatively small dathS) receiver and analyze the minimum number of required
packets. known symbols. The semi-blind least squares smoothing (LSS)

The elimination of training makes blind collision resolutiorapproach for collision resolution is proposed in Section IV.
an appealing alternative. Quite a few blind multiuser detectidhe minimum number of known symbols required by the LSS
methods proposed for CDMA systems—such as [6], [10], [19fgceiver is also derived. Theoretical resolvability comparison
and [23], and references therein—provide possible solutionsttetween the training-based LS receiver and the semi-blind
collision resolution. Unfortunately, relying on the distinctior.SS receiver is discussed in Section V. In Section VI, we
among all users’ codes, many existing blind techniques are poesent the simulation results on the resolvability comparison
able to resolve packet collisions in networks with a commaef the LS receiver and the proposed semi-blind LSS receiver.
code or receiver-based codes. The algorithms proposed in [Giyen the same number of known symbols, it is shown that
and [22] exploit the finite alphabet property of the input signalghe semi-blind LSS receiver provides significantly improved
they do not rely on code discrimination for signal separationesolvability over the LS receiver. The effect of error-control
The main difficulties for these algorithms, however, are the@lodes on the resolvability and the near—far resistance of the
complexity and the existence of local optima. proposed algorithm are also studied in simulations.

In most communication signals, there are known symbols em-
bedded in data packets for purposes of synchronization and user
identification. Based on this observation, many researchers [4],
[5], [9], [11], [16] considered semi-blind techniques for channé}. Notations and Definitions
estimation and equalization. Most existing semi-blind channelNotations used in this paper are mostly standard. Upper- and
estimation and equalization methods are proposed for sin@iger-case bold letters denote matrices and vectors(witand
input systems and do not directly apply to collision resolution)’ denoting the transpose and Hermitian operations, respec-

Il. PROBLEM STATEMENTS

problem in ad hoc networks. tively. Given a matrixA, R{A} is the row space ofi. For a
matrix X having the same number of columnsAsP1{ X} is
D. Contributions the projection error oX into the row space ofl.

Our goal is to provide a signal processing based collision re$- Model
olution technique that can be applied to random access networks
with receiver-oriented or network-wide transmission protocols. Consider a collision event that involvés users in a random
To this end, we utilize the embedded known symbols that mg((‘cess ad hoc network. Resolution of this collision can be mod-
not be sufficient for training-based methods. eled as a packet detection problemAninput P-output finite

In random access networks employing a common code or fnpulse response sys_tems, as shownin Fig. 1. The system inputs
ceiver-based codes, all or some of the colliding packets mayggrespond td¢ colliding packets, and the outputs come from
spread by a common code; spreading codes do not provide dufdiversity channels that may include spreading gain, over-
ficient information for packet separation. However, in multipatA@MPling factor, and possible antenna array. Suppose that each

fading scenarios, the overall channel impulse responses whRggket containsVy 5ymb°|33(k_)(0)a ~-, sM(No — 1), and
include spreading codes, propagation channels, and front- X(f) = 0fort < 0. The n0|selel§§lchanne| outpuft) €
filters are generally distinct among different colliding packet§, — and the received signg(#) € C7**(t =0, -+, No—1)

Based on this observation, we exploit the diversity of propagoM the slot when collision occurs can be written as
tion channels for packet separation. In particular, we group col-

liding packets according to their channel orders and extract them z(t) 2 [z1(), -+, zp(t)]

sequentially. Packets coming through channels with the smallest K Ly

channel order are obtained first and then subtracted from the ob- = Z Z B (8) st — ) 1)
servation. This successive demodulation makes the proposed al- k=1 i=

gorithm particularly attractive in near—far scenarios where users y(t) ==(t) +n(t) )

with smaller channel order are usually closer to the receiver,

hence have higher SNR. The subtraction of stronger users framere{h; (i) € C'*%,i =0, ---, L} is thekth user’s vector

the observation facilitates the detection of weaker ones. channel impulse response, which includes the spreading code,

In addition to the diversity of channel conditions, the prothe propagation channel, and the front-end filters at the trans-
posed algorithm also exploits embedded known symbols faitter and the receiver.
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where
wn(t) H, a [ngl)7 e HEUK)} € quPx(Kw+L) @)
y(t) SS)(t)
S (t) é c C(K'LU+L)><N (8)
yp(t) :
SE(1)
Fig. 1. Multiple-input multiple-output system. L é Z L;.

Consider the output(t) € C** collected fromN symbol N _
intervals, whereV < N will be specified soon. We deflne theOur goal here is to estimas" from Y, (¢) without knowing

output block row vectos; and the input row vectos ( ) a hy, = [hk( ), o b (L)) (=1, -+, K).
o 2[x(t), -, ot + N —1)] eV C. Assumptions
s 2 [Sg"ﬁ oy s 1} € XN, (3)  Three assumptions are made in this paper.
Al) There exists av such thatd ,, [as defined in (7)] has
From (1) and (2), we have full column rank.
K L A2) For thew specified in A1,S..(t) [as defined in (8)] has
Z Z B S g =T +n 4) full row rank.
Lt L (D)5, o A3) There are known symbols embedded in the data
. o o packets.
wherey, andn, are defined similarly as,. Consideringocon- A direct consequence of Al is the isomorphic relation be-
secutive output block row vectors, we define tween the input and output subspaces
N , R{X ()} = R{Sw(t)}. ©)
Xw(t) 2 : c CwPX/\ . (5)

This isomorphism indicates that without knowing the input se-
quences, the row span of the input mas§ix(¢) can be obtained

To contain inX ,(t) all the output from the slot when collision from the outputX,,(¢). As will be detailed in Section 1V, this
occurs, we have = 0 andN = Ny — w + 1. As discussed row space information on the input matrix is utilized by the pro-
in Section 1I-C, the selection af should be such that certainposed algorithm to reduce the number of known symbols re-
assumptions hold. For the convenience of notation, we wogkired by training-based collision resolution methods.

on X ,,(t) instead ofX ,(0) so that we do not need to worry For Al to hold, it is necessary thét,, has more rows than
about boundaries. However, it should be noted that the collisioolumns. This necessary condition leads to a lower bound,on
resolution techniques considered in this paper only rely on daisi given by

obtained from one slot.

Tt4w—1

The kth (1 < k& < K) user’s input symbols involved in A [ L w . ifL#£0
X ,,(t) and the corresponding channel matrix are defined as w2wy=§ | P-K (10)
“ 1, if L =0.
S L,

. A sufficient condition for Al is thatH(z) 2 [h1(2), -
S0 (1) A S('k) € ClwHT)XN hK(z).] is i'rreducible a}nd column reduced [1]. _ N
t A2 implies that the input sequences are persistently exciting.
A necessary condition for A2 is th&,,(¢) has more columns
(’“) than rows, i.e.N > Kw + L.

7

S
e A3 is a key assumption for all training-based and semi-blind
A hie(Li) oo ha(0) methods. This assumption holds in most communication sys-
Hfi) = tems, where known symbols are inserted in the data stream for
hi(Ly) - he(0) synchronization and user identification. We assume that each
€ quPx(wtLly), packet contains an equal number of known symbols that may

not be consecutive. The minimum amount of known symbols
With Y, (t) andN,,(¢) similarly defined, we have, from (4) required for collision resolution is discussed in the next two
sections, where we consider, respectively, the training-based
LS receiver and the proposed semi-blind LSS receiver. One
problem with training-based and semi-blind collision resolution
techniques is that the receiver needs to know which users are
Y o(t) =Xu(t) + Ny(t) (6) involved in the collision in order to determine which sets of

K
X'w(t) = Z Hg)sg) (t) = H'wS'w (t)

k=1
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known symbols should be utilized. However, in random accesslumns inS»(¢) whose indices are in;] has full row rank.
networks, the active user profile may not be available to tHenis implies that the minimum number of known symbols
receiver. One simple but perhaps computationally expensieguired for obtainingg’“) is determined by the number of rows
solution to this problem is to exhaust every set of known synr S»(¢, ), which is equal to the dimension @®{X(¢)}.

bols in the packet recovery. To reduce the computational coshe full row rank condition o1, (#, «;,) also indicates that the
we present an active user detection scheme in the followikgown symbols of any user can not be all zero. Furthermore,

section. if all users’ known symbols are inserted at the same place,
e, = = ag 2 «, then their known symbol vectors
ll. T RAINING-BASED LEAST SQUARES RECEIVER s (@), +- -, s(a) should be linearly independent.

In this section, we consider the LS receiver that relies onWe point out that sinc&V < Ny, [see (3) and (5)]s."’ does
training symbols. The minimum number of known symbols rerot contain all the symbols in thieth colliding packets. How-
quired by the LS receiver is analyzed. A simple active user dever, with the estimate a£", the rest of theV, — NV symbols
tection scheme is also presented. can be obtained.

A. An Example B. Minimum Number of Known Symbols Required by the LS

Consider an example where we have three colliding pack&gceive

with channel order 1, 1, and 2, respectively. Supposethat =~ The above example shows that to obtdi(k =1, -, K)
has full column rank and th&, (¢) has full row rank forv = 2. from X, (¢), the minimum number of known symbols required

From (6), we have by the LS receiver is the dimension &{X,(t)}. Conse-
quently, we have the following proposition.

Xo(t) 2 < Zt ) — HyS5(t). (11) Proposition 1. Let wy,;, denote the minimunw that makes

Tt41 H , full column rank andS.,(¢) full row rank. Assume that for

w < wWyin, NO column ofH ,, is linearly independent of other
columns inH,,. Then, the minimum numbek1g of known
symbols required by the LS receiver to recover all colliding

From the isomorphism betwedd{X,(¢)} andR{S:(¢)}, as
given in (9), we have

Sgk) € R{X,(t)}, k=123 (12) packets in the absence of noise is given by
e - : L
which implies that all colliding packets can be obtained as K [—w + L, fL#0
linear combinations in the row spaceXt (). With a sufficient Nis = Kwwin+L 2 P-K _ (16)
number of known symbols to construct linear equations, we can K, if L =0.

solve for the combination coefficients and resolve the collision. The proof of Proposition 1 is based on the following lemma
Under the assumption th&t (¢) has full row rank, we can show (the proof of Lemma 1 is given in the Appendix).

that R{X(t)} has dimension 10 by the isomorphic relation | o.nma 1: WhenS
and (11). Let{uy, - - -, u10} denote a basis oR{X(t)}. We
have, from (12)

»(t) has full row rank, the necessary and
sufficient condition forsgli)d € R{X,(t)}isthatthe(L;+1—
d)th column of H* is linearly independent of other columns
Ul in H,.
s = [ag’@’ e agﬁ)} : Proof of Proposition 1: Lemma 1 states that whefy, (¢)
u;o has full row rank, the necessary and _suffic_:ient conditi(_)n for
N the ith row vector ofS,,(¢) being contained iIrR{X,,(¢)} is
=aMU, k=1,23 (13) that thesth column vector ofH,, is linearly independent of
other columns inH,,. Hence, under the assumption that no

wherea® is the receiver coefficient vector forestimatimﬁ). column of H,, is linearly independent of other columnskh,,

For the LS receiveig®) can be obtained by imposing thaleasf:orw < Wi, N0 colliding packets can be obtained fraf, (£)
squares criterion on the known symbols'e_mbeddedtlﬁ.' by the LS receiver whem < wy,. Proposition 1 then follows
Specifically, letoy denpt?k;the vector containing the POSItioNirectly from the fact that the minimum number of known sym-
of the known symbols is,™. From (13), we have bols required by the LS receiver to recover the colliding packets
s(k)(a ) = a®U () (14) from X, .. (¢) is equal to the dimension ®{X ,,_. (¢t)}. _The
t \%k k lower bound onV s comes from the lower bound an given
where A(a;,) denotes the matrix that consists of the column§ (10). Lo

in A whose indices are inv. If U(ay,) is of full row rank, the It is interesting to note that under the assumptions of Propo-
optimal LS receiver fos'™ is given by sition 1, the conventional LS receiver does not have partial re-
t

solvability. Here, we define partial resolvability of a receiver as

Wmin

a® = sgk)(ak)U’(ak)(U(ak)U’(ak))_l. (15) the ability to recover some of the col]iding packets when the
number of available known symbols is smaller than the min-
Becaus€{uy, - - -, w10} is also a basis foR{S2(¢)}, a neces- imum amount required for resolution of all colliding packets.

sary and sufficient condition fdv(«, ) being of full row rank For the conventional LS receiver, when the number of known
is that S2(t, o) [defined as the matrix that consists of thesymbols is equal to or larger tha¥i.s, all colliding packets can
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be obtained. Otherwise, they are all lost. The lack of partial r&- Basic Idea
solvability in the LS receiver results from the fact that every col-

liding packet is obtained fronX ,,(#) with w > wynin. BeCAUSE oy o5 required by the LS receiver is a monotone increasing
no specific mf_ormatlon about the propagation channel is avallljnction of the number of colliding packets&{ and the sum-
"’_‘ble’ thE_’ receiver may have to assume that no colunthofs 1 ation of the channel order&). This observation suggests that
!lnearly independent of oth_er columns H,, for w < Wmin: in order to reduce the number of required known symbols, we
i.e., no packet can be obtained fra¥h, (¢) by the LS receiver should reduce MAI (decreas) and ISI (decreasé) in the
whenw < wyin. o _ received signal. The basic idea of the semi-blind LSS receiver
We point out that in Proposition 1 and other theoretical rés y, generate from the received signal an innovation sequence
sults that follow, we consider a packet recovered if it is obtaln(ﬂ:}at contains less MAI and ISI. The colliding packets can then

exactly by dinear FIR filter in the absence of noise. If the LSyo opyained from this innovation sequence with fewer known
receiver is followed by a nonlinear filter, such as a quantizgg,mbms

that maps the symbol estimates to their nearest constellatior\we illustrate the basic idea of the semi-blind LSS receiver

points, the minimum number of required known symbols M&y;i, the same example given in Section Ill. Consider first the de-

be smaller tharVi g, as illustrated by the simulation results intection of the two packet«él) ands§2) with the smallest channel

Section V1. order from X(¢). The key observation here is that although
) _ the input vectors with different time indices are linearly inde-
C. Active User Detection Scheme pendent, the channel memory brings time dependency, hence,

In Order to knOW Wh|Ch sets Of known Symbo's we need t@dundancy, intO the Output. To reduce MAI and IS', we intI‘O—
use in the collision resolution, the receiver needs the active u§é€e a smoothing operation dé(t) to obtain the innovation
profile, which may not be available in random access network¥ith respect to the future and past data. Specifically, consider
Exhausting every set of known symbols is a computationally ex- = 2 consecutive future and past data vect&g(t + 2) and
pensive way of solving this problem. Here, we present a simplez(t — 2) given by
scheme to detect those users that are involved in a collision.

Proposition 1 shows that the minimum number of known

Suppose that there are totdd users in the network. Let A T2\
ar(k = 1, ---, M) be the vector containing the positions of Xy(t+2) = P H385(t +2)
the known symbols ir:fgk). If the kth user is active in the time N2
slot when a particular collision occurs, then from (14), we have Xo(t-2)= <$ ) = H,Ss(t — 2).
t—1
. Under A1, we have the following two isomorphic relations:
s (ag) € R{IU(ap)}- (17) g P

It follows that the projection error Qﬁk)(ak) into R{U ()} RAXo(f+2)} =RAS(t +2)}

is zero. In contrast, if théth user is not involved in the colli- R{X(t —2)} =R{S2(t —2)}. (18)
sion, the projection error os‘ﬁk)(ock) into R{U ()} cannot be _ _

zero under the assumption thf;(llf)(ak) is linearly independent The overall data matrl)XG(t_ — 2_) that contains the future, the
of any row vector in the input matri§,, (¢, ). Hence, the ac- current, and the past data is given by

tive users can be detected by investigating the projection error

of sgk)(ak) into R{U(«)} for k = 1, ---, M. In the noisy Xo(t - 2)
case, we need to compare the projection errmﬁ@f{ak) into Xs(t—2)= Xo(t) = HgSs(t — 2). (29)
R{U(wy,)} with a certain threshold to determine whether the X(t +2)

kth user is active.

Under the assumption th#g has full column rank and¢(t —

2) has full row rank,X¢(t — 2) spans a 22-dimensional row

space, which is isomorphic ®{Ss(t — 2) }. This isomorphism
The least squares smoothing (LSS) approach was origindﬁyi"UStrated in Fig. 2, where the output block row vectors in

proposed for blind identification of single input multipleXs(t—2) and the input row vectors ifis (¢ —2) are plotted. The

output channels [17], [18], [28]. It was then realized in [26pther two pairs of isomorphic spaces specified in (18) are also il-

and [27] that the LSS approach can be applied to blind Bstrated with right and left slashes, respectively. The input row

semi-blind detection in multiple-input multiple-output system&/€ctors involved in the current dak,(¢) are shaded with hori-

The filtering effect of the LSS approach makes it particularigontal lines. Fig. 2 shows that among all input vectors contained

attractive for successive detection, where users are extradte »(t), only sgl) ands§2) are outside the space spanned by

sequentially, based on their channel conditions. In this sectiéhe future and past data. All the other input vectorXis(t) are

we propose a semi-blind collision resolution technique basedntained in eitheR {X>(t+2)} or R{X(t—2)}. For uncor-

on the LSS approach. We will show that the semi-blind LS&lated and zero-mean input signais, ands§2) are, asymp-

receiver provides significant improvement in resolvability ovewtically, the innovations oK »(¢) with respect toX »(¢+2) and

the training-based LS receiver. X (t — 2). It then follows that the asymptotic smoothing error

IV. SEMI-BLIND LEAST SQUARES SMOOTHING APPROACH
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Fig. 3. Schematic diagram of the semi-blind LSS approach.

[y <l < --- < l;. The number of colliding packets that come
from channels with ordek is k; (E‘i]:l k; = K). Without loss
of generality, we assume that the packets are arranged according
E(t) of X,(t) by the future dataX > (¢ + 2) and the past data to their channel orders and that the packets from channels with
X (t — 2) has the following form: order!; are the firstk; packets. Then, we have the following
theorem that characterizes the smoothing error.

Theorem 1: Suppose that Al holds far and2w + I; + 1.
Then, for uncorrelated and zero-mean input signals, the asymp-
totic smoothing erro#;, 14 () is given by

Fig. 2. Isomorphism between input and output subspaces.

A
Es(t) :/P[J)_(’Z(t-l—Q),Xé -2y 1 X2(t)}
= hlsgl) + h23§2) (20)

whereh; 2 [R}(0), -+,
ficients for theith user.
From (20), we note that the smoothing er#s(¢) contains

only two multiaccess interferers; the MAI from the third user tnaorem 1, which can be obtained by applying the single-user
and the ISI of the f|rst_ wo users are comple_zt_ely removed fr_OFEsult in [18] to multiuser cases as shown in [26], summarizes
X(t) by the smoothing operation. The original system Witf,o ey result on which the semi-blind LSS approach is based.
K =3, L = 4 has been converted to a system with= 2 £, (22) we note that the smoothing error contalins <
andL = 0. With h; andh, Ilr(lle)arly m(tg;ependentEQ(t) SPans - k- multiaccess interferers and no ISI. With known symbols

a 2-D row space from whick,™ ands,”" can be obtained with o the firstk; users, their packets can be obtained as linear

two known symbols from each. _ combinations in the:; -dimensional row space spanned by the
After recovering the first two users’ signals, we can also Ol%'moothing error. After recoveringfl) L (R
. )

’ A s , 8/, we can also
tain their channel coefficients frol,(¢) as obtainhy, - -, hy, from Ey 41 (t) as shown in (21). Conse-

quently, interference from the firét; users can be subtracted
from the received signal, and the same process can be applied
to users with channel ordérthat is now is the smallest channel

k;(L;)]' is the vector of channel coef- E; 1t ép[g%(t+ll+1)7XL‘(t_w)],{XllH(t)}

=hyst + o Ry s (22)

[h1, ho]l = E2(t)S; 1 .2(St,1:250 1.2) (21)

where

order.
xe) A schematic diagram of this approach is shown in Fig. 3,
Si1.0= < t2 ) . where we assume, without loss of generality, that 3. Fig. 3
sg ) shows that the semi-blind LSS receiver consists of two opera-

) ] tions: a blind smoothing and a nonblind linear separation. The
Hence, signals from the first two users can be subtracted frofimum number of known symbols required by each linear

the output, and we then have a system with= 1 and = 2. separator is also marked in Fig. 3.

With the output after the subtraction denotedzaswe now  onpe possible implementation of the semi-blind LSS approach

apply the same process to the third user. Consider the smoothjgg successive demodulation is summarized in Fig. 4.

error of X's(¢) by X»(f + 3) and X, (¢ — 2). With similar anal- - \ye point out that when the channel orders are unknown to

ysis, we have the asymptotic smoothing et(t) as the receiver, the semi-blind LSS approach can be implemented
by starting the successive demodulation from a lower bound to

A _
Es(t) IP[L;é(tJrg)yé (o 1 X3} an upper bound of the channel orders. At each stage, an energy
hast® detector can be built on the smoothing error to test whether there
= 3 f .

are users with this order present. If there are, the same active user
detection scheme presented in Section IlI-C can be implemented
8hthe smoothing error, and users with this order can be obtained
by exploiting their known symbols. It is possible that a weak
o ) ) ) . user eludes the energy detector. In this case, this user appears in
B. Semi-Blind LSS Receiver with Successive Demodulationyhe smoothing errors of later stages. The dimension of the space
Here, we consider the general case where we hapackets spanned by the smoothing error in these stages increases; hence,
involved in a collision. Suppose that, € {l1, ---, [;} with more known symbols are required by the linear separators.

With one known symbol from the third user to remove the scal
ambiguity, bothsg?’) andhgz can be obtained fronf's(¢).
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Semi-blind LSS with Successive Demodulation with equa“ty if and 0n|y if, = 0.
Choose w > wy such that AL holds for w and 2w+l +1 (1 <k < K). The above proposition states that the semi-blind LSS receiver
Fori=1:J requires fewer known symbols than the LS receiver, except
L Form Yiy{t + 4 +1), Yult - w), and Vi (2). whenL = 0. WhenL = 0, the received signal is a static linear

2. Obtain the orthogonal basis {uy,---,u,} that. slpans the r—dimensionaljsignal row space of mixture of theK CO”Idlng packets. There is no channel order
(Yult o b +2) Yo~ w)ll where 7 = (K = 3oy by) (20 MAREAR i diversity, and the ideal channels do not introduce redundancy
3 Obtain the projection error of ¥i.1(f) onto spfuy, -+, -} into the observation. The innovation sequence generated by the
N ) W smoothing operation is, asymptotically, the observation itself.
En()5Yn(t) - Yin(U'U, U= i Hence, the LSS receiver requires the same number of known
¢ symbols as the LS receiver.
4. Obtain the orthogonal basis {vi,---, vy} that spans the k;-dimensional signal row space of Another property of the semi-blind LSS receiver that distin-
?iz)lkftta)i.n the k; packets that have order I; from {vy, -, vy, } with k; known ;ymbols from each E::/Sehssol\fv::?r:nsghcetlgnsl |r|etﬁgltvt$|:§|i Slt?egg:j;] égzglxi?gﬁﬁr\;\/aer
tial resolution of the colliding packets. However, taking advan-
tage of the channel order diversity and successive subtraction,
the semi-blind LSS receiver possesses partial resolvability. As
illustrated in Fig. 3, the firsk; packets can be obtained by the
Fig. 4. Semi-blind least squares smoothing algorithm. LSS receiver, as long ds < Niss known symbols are avail-
able. In the following proposition, we compare the number of
C. Minimum Number of Known Symbols Required by the packets that can be r'ecovered by the semi-blind LSS receiver
Semi-Blind LSS Receiver and the L§ receiver givem known symbols.
] ] ] Proposition 4: Suppose that there are known symbols
Theorem 1 and the example given in Section IV-A show thglajlable. Under the assumptions of Proposition 1 and Propo-
unlike the LS receiver, the minimum number of known symbol§tion 2, the LS receiver and the semi-blind LSS receiver can

required by the semi-blind LS_S_ with successive demodulatiq)@cover, respectivelycys(m) andKyss(m) colliding packets,
does not depend on the specific valuesigfl < k& < K). gg given by

Instead, it is determined by the diversity of the channel orders

as specified in the following proposition. 0, ifm<NLs
Proposition 2: Suppose that Al holds far and2w + I; + Krs(m) = {K it m > A

1(1 < k < K). Then, for uncorrelated and zero-mean input ’ =S

signals, the minimum numbg¥; ss of known symbols required

by the LSS receiver with successive demodulation to recover all Krss(m) ! .

colliding packets in the absence of noise is given by Zki7 it m > ky

=1

of these k; packets.
6. Obtain the corresponding channel vectors from Ey 1(t) as shown in (21).
7. Subtract these k; packets from the observation.

end

(25)

0, if m <kp
(26)

./\/Lss:max{kl,---,kJ}SK. (23) where
Proposition 2 is a direct consequence of Theorem 1 and . ,

. . : A i j = max{k; < fori=1,---, 1} 27

successive demodulation. As illustrated in Fig. 3, thinear J mzrlx{ =meotont } 27)

separators in the LSS receiver requikg, ---, k; known P ition 4 qi titati h terizati fth
symbols, respectively. Hence, the minimum number of known roposition = gives a quantitative characterization of Ine par-

symbols required for recovering all colliding packets iglal resolvability of the semi-blind LSS receiver. It also demon-
max{ky, - -, ks}, as given in (23). The upper bound 8f.ss strates that given the same number of known symbols, the LSS

. . : i hieves noticeable improvement in resolvability over
follows directly fromk; < K(i = 1, ---,J). This upper receiver act i
bound is aahived only wheb(1 T ...) — L ie., theLSreceiver. Specifically, fromy < Niss < Nris, we have

J = 1. In the other extreme case when the channel orders of
the colliding packets are distinct, the LSS receiver can resolve

the collision blindly if the scalar ambiguity is not taken into . N . ) _
consideration. with equality if and only ifm < k& [when Kyss(m) =

ICLs(m) = 0] orm > NLS [When’CLss(m) = ICLs(m) = K]
We illustrate the two formulas given in Proposition 4 in
V. COMPARISON OF THELS AND THE SEMI-BLIND LSS Fig. 5, where we consider a typical example with— 4,
RECEIVERS key < k1 < k3 < ks, andL # 0.

From (23) and (16), we can see that the upper bakinon We point out that Proposition 1 holds for a finite number
Niss is a lower bound onVig, which can be achieved only of data samples, while Propositions 2—4 are asymptotic results.
whenZ = 0. Consequently, we have the following propositionT he loss of finite sample convergence property in the semi-blind

Proposition 3: Under the assumptions of Proposition 1 antSS receiver is a price we paid for the reduction of required
Proposition 2, we have known symbols. However, the simulation results shown in Sec-

tion VI demonstrate that even with a relatively small packet size
Nrss < Nis (24) (for example, 250 QPSK symbols per packet), the semi-blind

Kiss(m) > Krs(m) (28)
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IC(m) LSS vs. LS: Two Known Symbols
1 T T T T T
* LSSik=1 : : : :
K oprr s ] O WSSk=2 | AU SO e f
K ( ) - — LSSk=3
m x  LS:k=1
LSS | v LSk=2 |
kl + k2 -+ k3 ................... {
............ : K:Ls(m) 7L
ki 4+ ko ! :
0 : : mo
kl k3 NLSS(k4) NLS §
geo
Fig. 5. Typical example oK1 ss(m) andKrs(m). g
TABLE |
SETUP OFMULTIPATH CHANNEL PARAMETERS
Chip pulse shaping filter: | raised-cosine function with roll-off factor § = 0.25.
Number of rays: Uniformly distributed among {1, 2, 3,4, 5}. 3
Delay of each ray: uniformly distributed on [0, T, where T' was the symbol period. ° é 1I0 1'5 2'0 2'5 30

Delays of two different rays were independent with each other. SNR (dB)

Amplitude of each ray: Real and imaginary parts were independent Gaussian random

variables with zero mean and unit variance. Fig. 6. Resolvability comparisom{ = 2, ¢ = 10, perfect power control).

Amplitudes of two different rays were independent with each other.

Spreading gain: =32 In this simulation example, perfect power control was as-
Over sampling factor: | P = 2. sumed, and two known symbols:i(= 2) were considered to
Number of outputs: | P = FbP1 = 64 be available in each packet. We considered a colliding packet

to be resolved if it was detected with no more than ten errors
. o . ) . (¢ = 10). The resolvability functionsi{ = 1, 2, 3) of the LS
LSS receiver offers significantimprovementin collision resolVecejver and the semi-blind LSS receiver obtained from this sim-
ability over the LS receiver. ulation are shown in Fig. 6, which demonstrates that the pro-
posed semi-blind LSS receiver provides significantly improved
V1. SIMULATION EXAMPLES resolvability over the conventional LS receiver.

A. Setup The_simulatior_n result shown in Fig. 6 appears to be inconsis-
tent with (25). Sincen = 2 < MNs, (25) states that the LS

Simulation studies on the collision resolvability of the PrOsaceiver cannot resolve any colliding packets. However, the re-

posed semi-blind LSS receiver in random access networks Wi\t shown in Fig. 6 indicates that in about one third of these

acommon code are presented in thls_s_ectlon. We randomly 9%80 collision events, the LS receiver could recover at least one
erated 100 _re_ahzatlons of packet collision Whe_re three PaCkeéglliding packet with two known symbols. This “inconsistency”
ealtl:_h_con_tamln? thIOC; :%;SK”%/_mbOls’ |2N ?re mvotlvefl ('jn_ e?BQtween the theoretical and simulation results comes from the
co |s||otr_1, "e"vs otalo d tr?Ot tlhmg |c;.ac ets wereflles € 'kn rlﬂfference in the definition of resolvability. In Proposition 4 and
simulations. We assumed that the aclive user protile was Knoy o theoretical results presented in this paper, we consider a

to the receiver. The propagation channgls of these 300 Co”idiﬂgcket being resolved if it is obtained exactly in the absence of
packets were randomly generated multipath channels Whose[rl)

. . _ X Sise, whereas quantization and error-control coding were con-
rameters are listed in Table | With this setup of channel parag](ﬂiered in the simulations because of the presence of noise. The

et?rst,r;the poslsi?le channelhorderf are 1_a1nd 2h(in sym_boljpen% ulation result that the LS receiver had nonzero probability of
. nd ne sil(r)‘nu_lz_ahmns, Weblcf SSLBSE Wo = r\1N eréwo IIS € r%covering some of the colliding packets when< Ais can
ined in (10). The semi-blin approach was implementg explained as follows. In the simulations, the colliding packets

as a front-end filter to obtain sufficient known symbols. Th ere obtained from the space spanned by the first two right sin-

LS receiver was then implemented in the second step, base B vectors of (#) with two known symbols. There were

the known symbols obtained by the LSS approach. The perf Hses when a certain delay of one colliding packets was “al-

mance of this |mplementat|on of the se_m|—bI|nd LSS_rece“{%ost“ contained in this 2-D space. After quantization and error
was compared with that of the conventional LS receiver W't&)rrection, this packet can be recovered (possibly with delay).
optimal delay. Since we can consider only a 2-D subspac®¢Y .,(¢) } when
two known symbols are available, it is impossible that all three
packets can be resolved by the LS receiver. This is consistent
The concept of resolvability was introduced in [25] and [29)vith the result in Fig. 6, where the resolvability function of the
as a performance measure for receivers with collision resolutib8 receiver akt: = 3 was zero in the whole SNR range. Another
capability. The collision resolvability functioR x (k, m, ¢) of observation we make from Fig. 6 is that the resolvability func-
areceiver is defined as the probability that givetkknown sym- tion of the LS receiver leveled off when SNR went to infinity.
bols, at least < k < K colliding packets can be detected withThis is because when = 2 < Nig, the perfect LS filter could
no more thany errors at a certain SNR. not be constructed to eliminate all interference. The detection

B. Resolvability Comparison
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SNR=10dB Semi-Blind LSS: Near-Far vs. Perfect Power Control

0.8
0.7
: : : : 0.6
0.4 2
0 2 4 6 8 10 =
Number of Correctable Errors Number of Correctable Errors Los
SNR=20dB SNR=30dB &
1 T v 1 : T = 0.4
ool ok e TN T
o8- 08 _// e e e . s : *  Near—fark=1
. : : : : R PR : ¢ Near-fark=2
07} 07 i PR IR 02‘;/:4:.. .:’Av,.f. [ER R TR —— Near-fark=3 |- - p
: . : : : : : : = : x  Power Control:k=1
06 P TP e OB . e : : v Pawer Control:k=2
; : : : 2 : : : ok T e . foes o2 Power Controkke3 | -+ - i
[1Y-{ TP SERRRRT EEREPERS SRR SRRERERE 05 e s CRRTRRPS FRRRRRRS. SRRPREES : : : :
: : : z z : : : 0 i L i : ;
04 2 4 6 8 10 o4 2 4 [ 8 10 ° 5 1o SNF?(dB) 2 = a0
Number of Correctable Errors Number of Correctable Errors
Fig. 7. Percentage of the packets detected with no moregfan< ¢ < Fig. 8. Near—far versus perfect power contrel & 2, ¢ = 10).
10) errors among the packets detected with no more than 10 errors (“—": LSS,
“—":LS). LSS vs. LS: Two Known Symhols
T l T T T T T
*  LSSik=1 : : :
. i i . | © LSSka2 foovi o 4
error was mainly determined by the residual interference rath — Lsstes
than the additive noise. :

C. Effect of Error-Control Codes

In this simulation, we study the effect of error-control Codeggoﬁ_ ..... IR e G SR s RPN RN i
on the resolvability of the LS receiver and the semi-blind LS : : : ' :
receiver. We investigated the percentage of the colliding packe# .
detected with no more thay(0 < ¢ < 10) errors among the
packets detected with no more than ten errors. The simulatic ; . : : : : :
result is shown in Fig. 7, where the solid and the dashed curv oz O ...... - T T e
are results obtained with the semi-blind LSS receiver and the L : : : : : :

receiver, respectively. Perfect power control was assumed, @  A-.-i- oo o-coa-oofooioacioooo-o--d
two known symbols from each user were exploited in both re : % : ' A :
ceivers. Fig. 7 shows that the proposed semi-blind LSS receiv 300 400 500 600 700 800 900 1000

Packet Size N

had less dependence on error-control codes than the LS receiver,

especially at 0 dB. From Fig. 7, we also observe that error-cafig. 9. Effect of packet sizew = 2,4 =[3, 5, 8, 10], SNR= 20 dB, perfect

trol codes played a less important role at higher SNR. For tRgwer control).

semi-blind LSS receiver at 30 dB, among the colliding packets

detected with no more than ten errors, about 95% packets cositbws that the semi-blind LSS receiver performed better in the

be detected with no error. Hence, in cases when the efficieneyar—far scenario than in the perfect power control case. Even

of bandwidth utilization is of great concern, the semi-blind LS$ough the SNR was defined with respect to the strongest user,

receiver can be implemented without error-control coding, amide probability of resolving all three colliding packets in the

the decrease in the collision resolvability is only about 5%. near—far scenario was larger than that with perfect power con-
trol. The reason for this is that the LSS receiver first extracts

D. Near—Far Resistance packets with smaller channel order that have larger power in

The near—far resistance of the proposed semi-blind LSS R&ar—far scenarios. The subtraction of stronger users from the
ceiver is studied in this simulation. Recognizing that in near—f@Pservation facilitates the detection of weaker ones. This indi-
scenarios, users with smaller channel orders are usually cloe@es that the semi-blind LSS receiver is near—far resistant.
to the receiver and have larger power, we set the received signal )
power of users with order 1 stronger by 6 dB than that of users Effect of Packet Size
with order 2. SNR was defined as the ratio of the strongest user’'sSince the semi-blind LSS approach is a stochastic algorithm
received power to the noise variance. Two known symbols frattmat relies on the convergence of the second-order statistics, it
each user were exploited, and an error-control code that coiddlesirable to investigate the effect of packet size on its resolv-
correct up to 10 errors in a packet was assumed. In Fig. 8, thiality. In Fig. 9, we plotted the resolvability of the semi-blind
resolvability of the semi-blind LSS receiver with perfect poweltSS approach as a function of packet si¢eat SNR= 20 dB.
control is compared with that in the near—far scenario. Fig.The number of errors that could be corrected in a packet was
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TABLE I a penalty term in certain blind criteria, the proposed algorithm
MAXIMUM THROUGHF’SU;M?_’;SJ’:‘EL‘)'LI'_ZSESD %g;{/EEaALOHA WITHLSAND  genarates the utilization of known symbols from the blind cri-
terion. A two-step procedure that consists of a blind smoothing
MPR Capability: No MPR | LSSwithm =1 | LSS withm=2 | LSwithm =12 process and a nonblind linear separation is implemented in the
Maximum Throughput: | 0.3679 | 0.8156 1.3045 0.8557 semi-blind LSS approach. The blind smoothing process reduces
the number of known symbols required for collision resolution

4 = 3,5 8 and 10 forN = 250, 500, 750, and 1000, re-.by removing ISl and reducing MAI. The linear separator is then

. ; implemented in the second step to resolve the colliding packets
spectively. From Fig. 9, we can see that the performance of \ég

semi-blind LSS approach degraded gracefully as packet size _exploiting their embedded known symbols. Furthermore,
creased from 1000 to 250, AY — 250, the semi-blind LSS like many existing semi-blind methods, the LSS receiver

. S . . - does not require known symbols to be consecutive.
approach still offered significant improvement in resolvability The proposed semi-blind LSS approach is a stochastic algo-
over the LS receiver.

rithm that relies on the convergence of the second-order statis-
tics. In order to improve the performance with a finite number
of data samples, the LSS approach can be implemented as an

The LS receiver and the semi-blind LSS receiver can be ifnerference reduction filter followed by blind or training-based
plemented in both ad hoc networks and cellular systems for cglainods.

lision resolution. Not requiring feedback channels, they can be
usgd harmpniously with exi'sting protocol-based coIIis_ion reso- APPENDIX
lution algorithms. Here, we investigate the throughput improve- _ oy
ment achieved by the LS receiver and the semi-blind LSS re- Proof of Lemma 1:1fthe (L. +1—d)th column ofH;” is
ceiver in an infinite user cellular system using stabilized slotidé@early independent of other columns H,,, then there exists
Aloha. a vectorf # 0 such that

In an uncodedyq = 0) system with no noise, the resolvability
Ri(k,m)(K > 1,0 < k < K) of the LS receiver and
the semi-blind LSS receiver can be explicitly (_:alc_:ula_ted bas@\ﬁwereED is the Dth unit vector withD defined asD 2 Ly +
on P (the number of subchan_nels) and the dlstrlbutlon_(_)f the_ 4 + Eiyz—ll (w + L;). Thus
channel orders [25], [29]. The impact of the MPR capability of
the LS receiver and the semi-blind LSS receiver on the max- FXut)=fH,S,(t) = 35’31 (30)
imum throughput of an infinite user cellular network using sta-
bilized slotted Aloha can then be evaluated based on the res@it,
in [8]. Consider an example where we hak’e = 8, and the
channel order of each packet is identically and independently
distributed on{2, 3, 4} with equal probability. The max‘”.‘””.‘ onversely, ifs(’i)d € R{X,(t)}, then there exists a vector
stable throughput of a slotted Aloha network with the semi-blin £ 0 such thatt (30) holds. As a direct result, we have
LSS receiverf = 1, 2) and the LS receiveri{ = 12) is listed ' '
in Table Il, where we assume that collisions with multiplicity (f'H, — E,)S,(t) =0. (32)
K > 3 cannot be resolved by either LS or semi-blind LSS re-
ceiver, i.e.,Rx(k,m) = 0for K > 3,1 < k < K, and SinceS ., (¢) is of full-row rank, we have, from (32)
the givenm. Compared with the maximum stable throughput

F. Improvement in Network Performance

fH,=E) (29)

stV € R{X, (1)} (31)

! _
e~ ~ 0.3679 of the slotted Aloha network with usual collision fH., =Ep (33)
channel (no MPR capability), the throughput gain achieved Qyich implies that
the MPR capability of the semi-blind LSS receiver and the LS
receiver is obvious. fth; =0, i=1,---, Kw+L,i#D
) (34)
ffhp=1

VII. CONCLUSION
o\ﬁ/herehi is thesth column ofH ,,.

In this paper, we present a semi-blind collision resoluti
pap P Assume that

technique that does not rely on the code information of col-
liding packets. Consequently, it can be applied to random ac- hp = Z gih. (35)
cess networks with various transmission protocols. It also pro- iZD
vides a possible solution to packet collision in narrowband sys-
tems with fractional sampling and/or antenna array. Compar@ﬂe”
with the training-based LS receiver, significant improvement
in resolvability is achieved by the proposed semi-blind LSS
receiver.

The semi-blind LSS approach suggests a new way which contradicts with (34). Henckp, whichis the(L; +1—
exploiting known symbols. Different from many existingd)th column ong“), is linearly independent of other columns
semi-blind approaches where known symbols are used to foim#H . [/

Fho=F> ghi=> g:fhi=0 (36)

i£D i#D
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