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Semi-Blind Collision Resolution in Random Access
Wireless Ad Hoc Networks

Qing Zhao, Student Member, IEEE,and Lang Tong, Member, IEEE

Abstract—A new signal processing based collision resolution
technique for random access wireless ad hoc networks is proposed
in this paper. Without assuming the knowledge of propagation
channels and signal waveforms, the proposed algorithm is capable
of separating colliding packets by exploiting channel diversities
and known symbols embedded in data packets. Compared with
training-based methods, the proposed algorithm requires con-
siderably fewer known symbols. This algorithm can be applied
to various spread spectrum and narrowband systems along with
existing medium access control protocols.

Index Terms—Collision resolution, random access network,
semi-blind approach.

I. INTRODUCTION

A. Packet Collision and Multiple Packet Reception in Random
Access Networks

I N A SLOTTED random access ad hoc network, all users
share a common radio channel for immediate packet trans-

mission. A packet collision occurs when more than one user
transmits in the same slot. For conventional narrowband net-
works, this concurrent channel access by more than one user
results in the destruction of all colliding packets. To recover the
information in the colliding packets, they have to be retrans-
mitted in later time slots, which has adverse effects on the net-
work throughput and delay.

One effective way of improving the performance of random
access networks is to introduce multiple packet reception (MPR)
to the receivers. MPR enables correct receiving of some or all
colliding packets without retransmission. In addition to the di-
rect throughput and delay improvement brought by the recovery
of colliding packets, the traffic load caused by retransmissions
is reduced, which further decreases the frequency of collision
occurrence. Indeed, it has been shown that MPR capability sig-
nificantly improves the network performance [2], [3], [7], [8],
[14].

B. Collision Resolution at the Modulation Level

The use of code division multiple access (CDMA) in random
access networks can provide MPR by properly designed trans-
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mission protocols [13]. In general, spread spectrum transmis-
sion protocols can be classified into three major modes [15].

1) Transmitter-oriented spread spectrum transmission pro-
tocol

With this protocol, each user is assigned a unique trans-
mitting code. If the transmitter-based codes used by dif-
ferent users are orthogonal, all colliding packets can be
recovered under the assumption of perfect synchroniza-
tion and ideal channel conditions. However, if multipath
fading destroys the orthogonality or when nonorthogonal
codes are employed by the network, packet collisions
cannot be resolved at the modulation level.

2) Receiver-oriented spread spectrum transmission protocol
In this case, each user is assigned a unique receiving

code; all transmissions to a particular user must use that
user’s spreading code. With this protocol, packet colli-
sions cannot be completely resolved by CDMA modu-
lation, even if the receiver-based codes are orthogonal.
When more than one user transmits to a particular user in
the same slot, the packets intended for this user are lost.

3) Network-wide spread spectrum transmission protocol
This is perhaps the simplest transmission protocol,

where a common code, such as the time of day, is
employed by all users in the network. This protocol
facilitates the transmission of broadcast messages, but it
does not provide multiaccess capability at the modulation
level. The simultaneous transmission from different users
results in the destruction of all transmitted information.

The above discussion shows that even under the assumption
of perfect synchronization and ideal channel conditions, packet
collisions cannot be completely resolved at the modulation level
when a common code, receiver-based codes, or nonorthogonal
transmitter-based codes are employed.

C. Collision Resolution at the Signal Processing Level

Collision resolution at the signal processing level aims to pro-
vide the MPR capability to random access networks with var-
ious transmission protocols. Recent work by Tsatsaniset al.
[20], [21], [24] is perhaps the first that applies signal separa-
tion techniques for collision resolution in cellular systems. This
approach relies on multiple copies of the colliding packets from
the same set of users, which can be achieved by the central con-
trol of base stations. Due to the distributed nature of ad hoc net-
works, we cannot assume that the same set of users are active in
consecutive time slots. Consequently, collision resolution in ad
hoc networks needs to be achieved on a slot-by-slot basis.

Collision resolution in ad hoc networks may be achieved
by embedding known symbols in data packets. These known
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symbols can be used to design training-based packet separation
algorithms. In Section III, we consider one such approach,
where we show that the number of known symbols required by
training-based methods is related to the number of colliding
packets and their channel lengths. In heavily loaded networks
with severe multipath fading, the number of known symbols
required by training-based methods can be considerably
large. Incorporating a large amount of known symbols in data
packets is not efficient in bandwidth utilization, especially in
time-varying scenarios or in cases with relatively small data
packets.

The elimination of training makes blind collision resolution
an appealing alternative. Quite a few blind multiuser detection
methods proposed for CDMA systems—such as [6], [10], [19],
and [23], and references therein—provide possible solutions to
collision resolution. Unfortunately, relying on the distinction
among all users’ codes, many existing blind techniques are not
able to resolve packet collisions in networks with a common
code or receiver-based codes. The algorithms proposed in [12]
and [22] exploit the finite alphabet property of the input signals;
they do not rely on code discrimination for signal separation.
The main difficulties for these algorithms, however, are their
complexity and the existence of local optima.

In most communication signals, there are known symbols em-
bedded in data packets for purposes of synchronization and user
identification. Based on this observation, many researchers [4],
[5], [9], [11], [16] considered semi-blind techniques for channel
estimation and equalization. Most existing semi-blind channel
estimation and equalization methods are proposed for single
input systems and do not directly apply to collision resolution
problem in ad hoc networks.

D. Contributions

Our goal is to provide a signal processing based collision res-
olution technique that can be applied to random access networks
with receiver-oriented or network-wide transmission protocols.
To this end, we utilize the embedded known symbols that may
not be sufficient for training-based methods.

In random access networks employing a common code or re-
ceiver-based codes, all or some of the colliding packets may be
spread by a common code; spreading codes do not provide suf-
ficient information for packet separation. However, in multipath
fading scenarios, the overall channel impulse responses which
include spreading codes, propagation channels, and front-end
filters are generally distinct among different colliding packets.
Based on this observation, we exploit the diversity of propaga-
tion channels for packet separation. In particular, we group col-
liding packets according to their channel orders and extract them
sequentially. Packets coming through channels with the smallest
channel order are obtained first and then subtracted from the ob-
servation. This successive demodulation makes the proposed al-
gorithm particularly attractive in near–far scenarios where users
with smaller channel order are usually closer to the receiver,
hence have higher SNR. The subtraction of stronger users from
the observation facilitates the detection of weaker ones.

In addition to the diversity of channel conditions, the pro-
posed algorithm also exploits embedded known symbols for

packet separation. In order to reduce the number of required
known symbols, we obtain colliding packets from an innova-
tion sequence generated from the observation by a smoothing
operation. Since the innovation sequence contains less interfer-
ence than the observation, our approach requires considerably
fewer known symbols than training-based methods.

The rest of the paper is organized as follows. Section II
presents the system model and the assumptions used in this
paper. In Section III, we present the training-based least squares
(LS) receiver and analyze the minimum number of required
known symbols. The semi-blind least squares smoothing (LSS)
approach for collision resolution is proposed in Section IV.
The minimum number of known symbols required by the LSS
receiver is also derived. Theoretical resolvability comparison
between the training-based LS receiver and the semi-blind
LSS receiver is discussed in Section V. In Section VI, we
present the simulation results on the resolvability comparison
of the LS receiver and the proposed semi-blind LSS receiver.
Given the same number of known symbols, it is shown that
the semi-blind LSS receiver provides significantly improved
resolvability over the LS receiver. The effect of error-control
codes on the resolvability and the near–far resistance of the
proposed algorithm are also studied in simulations.

II. PROBLEM STATEMENTS

A. Notations and Definitions

Notations used in this paper are mostly standard. Upper- and
lower-case bold letters denote matrices and vectors withand

denoting the transpose and Hermitian operations, respec-
tively. Given a matrix , is the row space of . For a
matrix having the same number of columns as, is
the projection error of into the row space of .

B. Model

Consider a collision event that involvesusers in a random
access ad hoc network. Resolution of this collision can be mod-
eled as a packet detection problem in-input -output finite
impulse response systems, as shown in Fig. 1. The system inputs
correspond to colliding packets, and the outputs come from

diversity channels that may include spreading gain, over-
sampling factor, and possible antenna array. Suppose that each
packet contains symbols , and

for . The noiseless channel output
and the received signal

from the slot when collision occurs can be written as

(1)

(2)

where , is the th user’s vector
channel impulse response, which includes the spreading code,
the propagation channel, and the front-end filters at the trans-
mitter and the receiver.



2912 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 10, OCTOBER 2000

Fig. 1. Multiple-input multiple-output system.

Consider the output collected from symbol
intervals, where will be specified soon. We define the
output block row vector and the input row vector as

(3)

From (1) and (2), we have

(4)

where and are defined similarly as . Considering con-
secutive output block row vectors, we define

... (5)

To contain in all the output from the slot when collision
occurs, we have and . As discussed
in Section II-C, the selection of should be such that certain
assumptions hold. For the convenience of notation, we work
on instead of so that we do not need to worry
about boundaries. However, it should be noted that the collision
resolution techniques considered in this paper only rely on data
obtained from one slot.

The th user’s input symbols involved in
and the corresponding channel matrix are defined as

...

...

.. .
. . .

With and similarly defined, we have, from (4)

(6)

where

(7)

... (8)

Our goal here is to estimate from without knowing

.

C. Assumptions

Three assumptions are made in this paper.

A1) There exists a such that [as defined in (7)] has
full column rank.

A2) For the specified in A1, [as defined in (8)] has
full row rank.

A3) There are known symbols embedded in the data
packets.

A direct consequence of A1 is the isomorphic relation be-
tween the input and output subspaces

(9)

This isomorphism indicates that without knowing the input se-
quences, the row span of the input matrix can be obtained
from the output . As will be detailed in Section IV, this
row space information on the input matrix is utilized by the pro-
posed algorithm to reduce the number of known symbols re-
quired by training-based collision resolution methods.

For A1 to hold, it is necessary that has more rows than
columns. This necessary condition leads to a lower bound on,
as given by

if

if

(10)

A sufficient condition for A1 is that
is irreducible and column reduced [1].

A2 implies that the input sequences are persistently exciting.
A necessary condition for A2 is that has more columns
than rows, i.e., .

A3 is a key assumption for all training-based and semi-blind
methods. This assumption holds in most communication sys-
tems, where known symbols are inserted in the data stream for
synchronization and user identification. We assume that each
packet contains an equal number of known symbols that may
not be consecutive. The minimum amount of known symbols
required for collision resolution is discussed in the next two
sections, where we consider, respectively, the training-based
LS receiver and the proposed semi-blind LSS receiver. One
problem with training-based and semi-blind collision resolution
techniques is that the receiver needs to know which users are
involved in the collision in order to determine which sets of
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known symbols should be utilized. However, in random access
networks, the active user profile may not be available to the
receiver. One simple but perhaps computationally expensive
solution to this problem is to exhaust every set of known sym-
bols in the packet recovery. To reduce the computational cost,
we present an active user detection scheme in the following
section.

III. T RAINING-BASED LEAST SQUARESRECEIVER

In this section, we consider the LS receiver that relies on
training symbols. The minimum number of known symbols re-
quired by the LS receiver is analyzed. A simple active user de-
tection scheme is also presented.

A. An Example

Consider an example where we have three colliding packets
with channel order 1, 1, and 2, respectively. Suppose that
has full column rank and that has full row rank for .
From (6), we have

(11)

From the isomorphism between and , as
given in (9), we have

(12)

which implies that all colliding packets can be obtained as
linear combinations in the row space of . With a sufficient
number of known symbols to construct linear equations, we can
solve for the combination coefficients and resolve the collision.
Under the assumption that has full row rank, we can show
that has dimension 10 by the isomorphic relation
and (11). Let denote a basis of . We
have, from (12)

...

(13)

where is the receiver coefficient vector for estimating .
For the LS receiver, can be obtained by imposing the least
squares criterion on the known symbols embedded in.
Specifically, let denote the vector containing the positions
of the known symbols in . From (13), we have

(14)

where denotes the matrix that consists of the columns
in whose indices are in . If is of full row rank, the
optimal LS receiver for is given by

(15)

Because is also a basis for , a neces-
sary and sufficient condition for being of full row rank
is that [defined as the matrix that consists of the

columns in whose indices are in ] has full row rank.
This implies that the minimum number of known symbols
required for obtaining is determined by the number of rows
in , which is equal to the dimension of .
The full row rank condition on also indicates that the
known symbols of any user can not be all zero. Furthermore,
if all users’ known symbols are inserted at the same place,
i.e., , then their known symbol vectors

should be linearly independent.
We point out that since [see (3) and (5)], does

not contain all the symbols in theth colliding packets. How-
ever, with the estimate of , the rest of the symbols
can be obtained.

B. Minimum Number of Known Symbols Required by the LS
Receive

The above example shows that to obtain
from , the minimum number of known symbols required
by the LS receiver is the dimension of . Conse-
quently, we have the following proposition.

Proposition 1: Let denote the minimum that makes
full column rank and full row rank. Assume that for

, no column of is linearly independent of other
columns in . Then, the minimum number of known
symbols required by the LS receiver to recover all colliding
packets in the absence of noise is given by

if

if

(16)

The proof of Proposition 1 is based on the following lemma
(the proof of Lemma 1 is given in the Appendix).

Lemma 1: When has full row rank, the necessary and
sufficient condition for is that the

th column of is linearly independent of other columns
in .

Proof of Proposition 1: Lemma 1 states that when
has full row rank, the necessary and sufficient condition for
the th row vector of being contained in is
that the th column vector of is linearly independent of
other columns in . Hence, under the assumption that no
column of is linearly independent of other columns in
for , no colliding packets can be obtained from
by the LS receiver when . Proposition 1 then follows
directly from the fact that the minimum number of known sym-
bols required by the LS receiver to recover the colliding packets
from is equal to the dimension of . The
lower bound on comes from the lower bound on given
in (10).

It is interesting to note that under the assumptions of Propo-
sition 1, the conventional LS receiver does not have partial re-
solvability. Here, we define partial resolvability of a receiver as
the ability to recover some of the colliding packets when the
number of available known symbols is smaller than the min-
imum amount required for resolution of all colliding packets.
For the conventional LS receiver, when the number of known
symbols is equal to or larger than , all colliding packets can
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be obtained. Otherwise, they are all lost. The lack of partial re-
solvability in the LS receiver results from the fact that every col-
liding packet is obtained from with . Because
no specific information about the propagation channel is avail-
able, the receiver may have to assume that no column ofis
linearly independent of other columns in for ,
i.e., no packet can be obtained from by the LS receiver
when .

We point out that in Proposition 1 and other theoretical re-
sults that follow, we consider a packet recovered if it is obtained
exactly by alinear FIR filter in the absence of noise. If the LS
receiver is followed by a nonlinear filter, such as a quantizer
that maps the symbol estimates to their nearest constellation
points, the minimum number of required known symbols may
be smaller than , as illustrated by the simulation results in
Section VI.

C. Active User Detection Scheme

In order to know which sets of known symbols we need to
use in the collision resolution, the receiver needs the active user
profile, which may not be available in random access networks.
Exhausting every set of known symbols is a computationally ex-
pensive way of solving this problem. Here, we present a simple
scheme to detect those users that are involved in a collision.

Suppose that there are total users in the network. Let
be the vector containing the positions of

the known symbols in . If the th user is active in the time
slot when a particular collision occurs, then from (14), we have

(17)

It follows that the projection error of into
is zero. In contrast, if theth user is not involved in the colli-
sion, the projection error of into cannot be
zero under the assumption that is linearly independent
of any row vector in the input matrix . Hence, the ac-
tive users can be detected by investigating the projection error
of into for . In the noisy
case, we need to compare the projection error of into

with a certain threshold to determine whether the
th user is active.

IV. SEMI-BLIND LEAST SQUARESSMOOTHING APPROACH

The least squares smoothing (LSS) approach was originally
proposed for blind identification of single input multiple
output channels [17], [18], [28]. It was then realized in [26]
and [27] that the LSS approach can be applied to blind or
semi-blind detection in multiple-input multiple-output systems.
The filtering effect of the LSS approach makes it particularly
attractive for successive detection, where users are extracted
sequentially, based on their channel conditions. In this section,
we propose a semi-blind collision resolution technique based
on the LSS approach. We will show that the semi-blind LSS
receiver provides significant improvement in resolvability over
the training-based LS receiver.

A. Basic Idea

Proposition 1 shows that the minimum number of known
symbols required by the LS receiver is a monotone increasing
function of the number of colliding packets () and the sum-
mation of the channel orders (). This observation suggests that
in order to reduce the number of required known symbols, we
should reduce MAI (decrease) and ISI (decrease ) in the
received signal. The basic idea of the semi-blind LSS receiver
is to generate from the received signal an innovation sequence
that contains less MAI and ISI. The colliding packets can then
be obtained from this innovation sequence with fewer known
symbols.

We illustrate the basic idea of the semi-blind LSS receiver
with the same example given in Section III. Consider first the de-
tection of the two packets and with the smallest channel
order from . The key observation here is that although
the input vectors with different time indices are linearly inde-
pendent, the channel memory brings time dependency, hence,
redundancy, into the output. To reduce MAI and ISI, we intro-
duce a smoothing operation on to obtain the innovation
with respect to the future and past data. Specifically, consider

consecutive future and past data vectors and
given by

Under A1, we have the following two isomorphic relations:

(18)

The overall data matrix that contains the future, the
current, and the past data is given by

(19)

Under the assumption that has full column rank and
has full row rank, spans a 22-dimensional row

space, which is isomorphic to . This isomorphism
is illustrated in Fig. 2, where the output block row vectors in

and the input row vectors in are plotted. The
other two pairs of isomorphic spaces specified in (18) are also il-
lustrated with right and left slashes, respectively. The input row
vectors involved in the current data are shaded with hori-
zontal lines. Fig. 2 shows that among all input vectors contained
in , only and are outside the space spanned by
the future and past data. All the other input vectors in are
contained in either or . For uncor-
related and zero-mean input signals, and are, asymp-
totically, the innovations of with respect to and

. It then follows that the asymptotic smoothing error
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Fig. 2. Isomorphism between input and output subspaces.

of by the future data and the past data
has the following form:

(20)

where is the vector of channel coef-
ficients for the th user.

From (20), we note that the smoothing error contains
only two multiaccess interferers; the MAI from the third user
and the ISI of the first two users are completely removed from

by the smoothing operation. The original system with
, has been converted to a system with

and . With and linearly independent, spans
a 2-D row space from which and can be obtained with
two known symbols from each.

After recovering the first two users’ signals, we can also ob-
tain their channel coefficients from as

(21)

where

Hence, signals from the first two users can be subtracted from
the output, and we then have a system with and .
With the output after the subtraction denoted as, we now
apply the same process to the third user. Consider the smoothing
error of by and . With similar anal-
ysis, we have the asymptotic smoothing error as

With one known symbol from the third user to remove the scalar
ambiguity, both and can be obtained from .

B. Semi-Blind LSS Receiver with Successive Demodulation

Here, we consider the general case where we havepackets
involved in a collision. Suppose that with

Fig. 3. Schematic diagram of the semi-blind LSS approach.

. The number of colliding packets that come
from channels with order is ( ). Without loss
of generality, we assume that the packets are arranged according
to their channel orders and that the packets from channels with
order are the first packets. Then, we have the following
theorem that characterizes the smoothing error.

Theorem 1: Suppose that A1 holds for and .
Then, for uncorrelated and zero-mean input signals, the asymp-
totic smoothing error is given by

(22)

Theorem 1, which can be obtained by applying the single-user
result in [18] to multiuser cases as shown in [26], summarizes
the key result on which the semi-blind LSS approach is based.
From (22), we note that the smoothing error contains

multiaccess interferers and no ISI. With known symbols
from the first users, their packets can be obtained as linear
combinations in the -dimensional row space spanned by the
smoothing error. After recovering , we can also
obtain from as shown in (21). Conse-
quently, interference from the first users can be subtracted
from the received signal, and the same process can be applied
to users with channel orderthat is now is the smallest channel
order.

A schematic diagram of this approach is shown in Fig. 3,
where we assume, without loss of generality, that . Fig. 3
shows that the semi-blind LSS receiver consists of two opera-
tions: a blind smoothing and a nonblind linear separation. The
minimum number of known symbols required by each linear
separator is also marked in Fig. 3.

One possible implementation of the semi-blind LSS approach
with successive demodulation is summarized in Fig. 4.

We point out that when the channel orders are unknown to
the receiver, the semi-blind LSS approach can be implemented
by starting the successive demodulation from a lower bound to
an upper bound of the channel orders. At each stage, an energy
detector can be built on the smoothing error to test whether there
are users with this order present. If there are, the same active user
detection scheme presented in Section III-C can be implemented
on the smoothing error, and users with this order can be obtained
by exploiting their known symbols. It is possible that a weak
user eludes the energy detector. In this case, this user appears in
the smoothing errors of later stages. The dimension of the space
spanned by the smoothing error in these stages increases; hence,
more known symbols are required by the linear separators.
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Fig. 4. Semi-blind least squares smoothing algorithm.

C. Minimum Number of Known Symbols Required by the
Semi-Blind LSS Receiver

Theorem 1 and the example given in Section IV-A show that
unlike the LS receiver, the minimum number of known symbols
required by the semi-blind LSS with successive demodulation
does not depend on the specific values of .
Instead, it is determined by the diversity of the channel orders
as specified in the following proposition.

Proposition 2: Suppose that A1 holds for and
. Then, for uncorrelated and zero-mean input

signals, the minimum number of known symbols required
by the LSS receiver with successive demodulation to recover all
colliding packets in the absence of noise is given by

(23)

Proposition 2 is a direct consequence of Theorem 1 and
successive demodulation. As illustrated in Fig. 3, thelinear
separators in the LSS receiver require known
symbols, respectively. Hence, the minimum number of known
symbols required for recovering all colliding packets is

, as given in (23). The upper bound on
follows directly from . This upper
bound is achieved only when , i.e.,

. In the other extreme case when the channel orders of
the colliding packets are distinct, the LSS receiver can resolve
the collision blindly if the scalar ambiguity is not taken into
consideration.

V. COMPARISON OF THELS AND THE SEMI-BLIND LSS
RECEIVERS

From (23) and (16), we can see that the upper boundon
is a lower bound on , which can be achieved only

when . Consequently, we have the following proposition.
Proposition 3: Under the assumptions of Proposition 1 and

Proposition 2, we have

(24)

with equality if and only if .
The above proposition states that the semi-blind LSS receiver

requires fewer known symbols than the LS receiver, except
when . When , the received signal is a static linear
mixture of the colliding packets. There is no channel order
diversity, and the ideal channels do not introduce redundancy
into the observation. The innovation sequence generated by the
smoothing operation is, asymptotically, the observation itself.
Hence, the LSS receiver requires the same number of known
symbols as the LS receiver.

Another property of the semi-blind LSS receiver that distin-
guishes it from the LS receiver is its partial resolvability. We
have shown in Section III that the LS receiver does not offer par-
tial resolution of the colliding packets. However, taking advan-
tage of the channel order diversity and successive subtraction,
the semi-blind LSS receiver possesses partial resolvability. As
illustrated in Fig. 3, the first packets can be obtained by the
LSS receiver, as long as known symbols are avail-
able. In the following proposition, we compare the number of
packets that can be recovered by the semi-blind LSS receiver
and the LS receiver given known symbols.

Proposition 4: Suppose that there are known symbols
available. Under the assumptions of Proposition 1 and Propo-
sition 2, the LS receiver and the semi-blind LSS receiver can
recover, respectively, and colliding packets,
as given by

if

if
(25)

if

if
(26)

where

(27)

Proposition 4 gives a quantitative characterization of the par-
tial resolvability of the semi-blind LSS receiver. It also demon-
strates that given the same number of known symbols, the LSS
receiver achieves noticeable improvement in resolvability over
the LS receiver. Specifically, from , we have

(28)

with equality if and only if [when
] or [when ].

We illustrate the two formulas given in Proposition 4 in
Fig. 5, where we consider a typical example with ,

, and .
We point out that Proposition 1 holds for a finite number

of data samples, while Propositions 2–4 are asymptotic results.
The loss of finite sample convergence property in the semi-blind
LSS receiver is a price we paid for the reduction of required
known symbols. However, the simulation results shown in Sec-
tion VI demonstrate that even with a relatively small packet size
(for example, 250 QPSK symbols per packet), the semi-blind
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Fig. 5. Typical example ofK (m) andK (m).

TABLE I
SETUP OFMULTIPATH CHANNEL PARAMETERS

LSS receiver offers significant improvement in collision resolv-
ability over the LS receiver.

VI. SIMULATION EXAMPLES

A. Setup

Simulation studies on the collision resolvability of the pro-
posed semi-blind LSS receiver in random access networks with
a common code are presented in this section. We randomly gen-
erated 100 realizations of packet collision where three packets,
each containing 1000 QPSK symbols, were involved in each
collision, i.e., a total of 300 colliding packets were tested in the
simulations. We assumed that the active user profile was known
to the receiver. The propagation channels of these 300 colliding
packets were randomly generated multipath channels whose pa-
rameters are listed in Table I. With this setup of channel param-
eters, the possible channel orders are 1 and 2 (in symbol period).

In the simulations, we chose , where is de-
fined in (10). The semi-blind LSS approach was implemented
as a front-end filter to obtain sufficient known symbols. The
LS receiver was then implemented in the second step, based on
the known symbols obtained by the LSS approach. The perfor-
mance of this implementation of the semi-blind LSS receiver
was compared with that of the conventional LS receiver with
optimal delay.

B. Resolvability Comparison

The concept of resolvability was introduced in [25] and [29]
as a performance measure for receivers with collision resolution
capability. The collision resolvability function of
a receiver is defined as the probability that givenknown sym-
bols, at least colliding packets can be detected with
no more than errors at a certain SNR.

Fig. 6. Resolvability comparison (m = 2, q = 10, perfect power control).

In this simulation example, perfect power control was as-
sumed, and two known symbols ( ) were considered to
be available in each packet. We considered a colliding packet
to be resolved if it was detected with no more than ten errors
( ). The resolvability functions ( ) of the LS
receiver and the semi-blind LSS receiver obtained from this sim-
ulation are shown in Fig. 6, which demonstrates that the pro-
posed semi-blind LSS receiver provides significantly improved
resolvability over the conventional LS receiver.

The simulation result shown in Fig. 6 appears to be inconsis-
tent with (25). Since , (25) states that the LS
receiver cannot resolve any colliding packets. However, the re-
sult shown in Fig. 6 indicates that in about one third of these
100 collision events, the LS receiver could recover at least one
colliding packet with two known symbols. This “inconsistency”
between the theoretical and simulation results comes from the
difference in the definition of resolvability. In Proposition 4 and
other theoretical results presented in this paper, we consider a
packet being resolved if it is obtained exactly in the absence of
noise, whereas quantization and error-control coding were con-
sidered in the simulations because of the presence of noise. The
simulation result that the LS receiver had nonzero probability of
recovering some of the colliding packets when can
be explained as follows. In the simulations, the colliding packets
were obtained from the space spanned by the first two right sin-
gular vectors of with two known symbols. There were
cases when a certain delay of one colliding packets was “al-
most” contained in this 2-D space. After quantization and error
correction, this packet can be recovered (possibly with delay).
Since we can consider only a 2-D subspace of when
two known symbols are available, it is impossible that all three
packets can be resolved by the LS receiver. This is consistent
with the result in Fig. 6, where the resolvability function of the
LS receiver at was zero in the whole SNR range. Another
observation we make from Fig. 6 is that the resolvability func-
tion of the LS receiver leveled off when SNR went to infinity.
This is because when , the perfect LS filter could
not be constructed to eliminate all interference. The detection
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Fig. 7. Percentage of the packets detected with no more thanq(0 � q �

10) errors among the packets detected with no more than 10 errors (“—” : LSS,
“—.” : LS).

error was mainly determined by the residual interference rather
than the additive noise.

C. Effect of Error-Control Codes

In this simulation, we study the effect of error-control codes
on the resolvability of the LS receiver and the semi-blind LSS
receiver. We investigated the percentage of the colliding packets
detected with no more than errors among the
packets detected with no more than ten errors. The simulation
result is shown in Fig. 7, where the solid and the dashed curves
are results obtained with the semi-blind LSS receiver and the LS
receiver, respectively. Perfect power control was assumed, and
two known symbols from each user were exploited in both re-
ceivers. Fig. 7 shows that the proposed semi-blind LSS receiver
had less dependence on error-control codes than the LS receiver,
especially at 0 dB. From Fig. 7, we also observe that error-con-
trol codes played a less important role at higher SNR. For the
semi-blind LSS receiver at 30 dB, among the colliding packets
detected with no more than ten errors, about 95% packets could
be detected with no error. Hence, in cases when the efficiency
of bandwidth utilization is of great concern, the semi-blind LSS
receiver can be implemented without error-control coding, and
the decrease in the collision resolvability is only about 5%.

D. Near–Far Resistance

The near–far resistance of the proposed semi-blind LSS re-
ceiver is studied in this simulation. Recognizing that in near–far
scenarios, users with smaller channel orders are usually closer
to the receiver and have larger power, we set the received signal
power of users with order 1 stronger by 6 dB than that of users
with order 2. SNR was defined as the ratio of the strongest user’s
received power to the noise variance. Two known symbols from
each user were exploited, and an error-control code that could
correct up to 10 errors in a packet was assumed. In Fig. 8, the
resolvability of the semi-blind LSS receiver with perfect power
control is compared with that in the near–far scenario. Fig. 8

Fig. 8. Near–far versus perfect power control (m = 2, q = 10).

Fig. 9. Effect of packet size (m = 2, q =[3, 5, 8, 10], SNR= 20 dB, perfect
power control).

shows that the semi-blind LSS receiver performed better in the
near–far scenario than in the perfect power control case. Even
though the SNR was defined with respect to the strongest user,
the probability of resolving all three colliding packets in the
near–far scenario was larger than that with perfect power con-
trol. The reason for this is that the LSS receiver first extracts
packets with smaller channel order that have larger power in
near–far scenarios. The subtraction of stronger users from the
observation facilitates the detection of weaker ones. This indi-
cates that the semi-blind LSS receiver is near–far resistant.

E. Effect of Packet Size

Since the semi-blind LSS approach is a stochastic algorithm
that relies on the convergence of the second-order statistics, it
is desirable to investigate the effect of packet size on its resolv-
ability. In Fig. 9, we plotted the resolvability of the semi-blind
LSS approach as a function of packet sizeat SNR 20 dB.
The number of errors that could be corrected in a packet was
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TABLE II
MAXIMUM THROUGHPUT OFSTABILIZED SLOTTED ALOHA WITH LS AND

SEMI-BLIND LSS RECEIVER

3, 5, 8, and 10 for 250, 500, 750, and 1000, re-
spectively. From Fig. 9, we can see that the performance of the
semi-blind LSS approach degraded gracefully as packet size de-
creased from 1000 to 250. At , the semi-blind LSS
approach still offered significant improvement in resolvability
over the LS receiver.

F. Improvement in Network Performance

The LS receiver and the semi-blind LSS receiver can be im-
plemented in both ad hoc networks and cellular systems for col-
lision resolution. Not requiring feedback channels, they can be
used harmoniously with existing protocol-based collision reso-
lution algorithms. Here, we investigate the throughput improve-
ment achieved by the LS receiver and the semi-blind LSS re-
ceiver in an infinite user cellular system using stabilized slotted
Aloha.

In an uncoded ( 0) system with no noise, the resolvability
of the LS receiver and

the semi-blind LSS receiver can be explicitly calculated based
on (the number of subchannels) and the distribution of the
channel orders [25], [29]. The impact of the MPR capability of
the LS receiver and the semi-blind LSS receiver on the max-
imum throughput of an infinite user cellular network using sta-
bilized slotted Aloha can then be evaluated based on the result
in [8]. Consider an example where we have 8, and the
channel order of each packet is identically and independently
distributed on 2, 3, 4 with equal probability. The maximum
stable throughput of a slotted Aloha network with the semi-blind
LSS receiver ( 1, 2) and the LS receiver ( 12) is listed
in Table II, where we assume that collisions with multiplicity

3 cannot be resolved by either LS or semi-blind LSS re-
ceiver, i.e., for , and
the given . Compared with the maximum stable throughput

of the slotted Aloha network with usual collision
channel (no MPR capability), the throughput gain achieved by
the MPR capability of the semi-blind LSS receiver and the LS
receiver is obvious.

VII. CONCLUSION

In this paper, we present a semi-blind collision resolution
technique that does not rely on the code information of col-
liding packets. Consequently, it can be applied to random ac-
cess networks with various transmission protocols. It also pro-
vides a possible solution to packet collision in narrowband sys-
tems with fractional sampling and/or antenna array. Compared
with the training-based LS receiver, significant improvement
in resolvability is achieved by the proposed semi-blind LSS
receiver.

The semi-blind LSS approach suggests a new way of
exploiting known symbols. Different from many existing
semi-blind approaches where known symbols are used to form

a penalty term in certain blind criteria, the proposed algorithm
separates the utilization of known symbols from the blind cri-
terion. A two-step procedure that consists of a blind smoothing
process and a nonblind linear separation is implemented in the
semi-blind LSS approach. The blind smoothing process reduces
the number of known symbols required for collision resolution
by removing ISI and reducing MAI. The linear separator is then
implemented in the second step to resolve the colliding packets
by exploiting their embedded known symbols. Furthermore,
unlike many existing semi-blind methods, the LSS receiver
does not require known symbols to be consecutive.

The proposed semi-blind LSS approach is a stochastic algo-
rithm that relies on the convergence of the second-order statis-
tics. In order to improve the performance with a finite number
of data samples, the LSS approach can be implemented as an
interference reduction filter followed by blind or training-based
methods.

APPENDIX

Proof of Lemma 1:If the th column of is
linearly independent of other columns in , then there exists
a vector such that

(29)

where is the th unit vector with defined as
. Thus

(30)

i.e.,

(31)

Conversely, if , then there exists a vector
such that (30) holds. As a direct result, we have

(32)

Since is of full-row rank, we have, from (32)

(33)

which implies that

(34)

where is the th column of .
Assume that

(35)

Then

(36)

which contradicts with (34). Hence, , which is the
th column of , is linearly independent of other columns

in .
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