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Abstract—The problem of security against packet timing based
traffic analysis in wireless networks is considered in this work.
An analytical measure of “anonymity” of routes in eavesdropped
networks is proposed using the information-theoretic equivoca-
tion. For a physical layer with orthogonal transmitter directed
signaling, scheduling and relaying techniques are designed to
maximize achievable network performance for any desired level
of anonymity. The network performance is measured by the
total rate of packets delivered from the sources to destinations
under strict latency and medium access constraints. In particular,
analytical results are presented for two scenarios:

For a single relay that forwards packets fromm users, relaying
strategies are provided that minimize the packet drops when the
source nodes and the relay generate independent transmission
schedules. A relay using such an independent scheduling strategy
is undetectable by an eavesdropper and is referred to as a covert
relay. Achievable rate regions are characterized under strict
and average delay constraints on the traffic, when schedules are
independent Poisson processes.

For a multihop network with an arbitrary anonymity require-
ment, the problem of maximizing the sum-rate of flows (network
throughput) is considered. A randomized selection strategy to
choose covert relays as a function of the routes is designed for
this purpose. Using the analytical results for a single covert relay,
the strategy is optimized to obtain the maximum achievable
throughput as a function of the desired level of anonymity. In
particular, the throughput–anonymity relation for the proposed
strategy is shown to be equivalent to an information-theoretic
rate–distortion function.

Index Terms—Anonymity, equivocation, network security,
rate–distortion, traffic analysis.

I. INTRODUCTION

EAVESDROPPERS monitoring transmissions in a network
can deduce source–destination pairs and paths of data

flow by analyzing the timing information in the network traffic.
Traffic analysis has played a prominent role in modern warfare
[1] and its potential to compromise privacy in Internet commu-
nication is well documented in literature [2]–[5]. For example,
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the weaknesses of protocols for web browsing [4], [6] and SSH
[7] have been exposed through traffic analysis.

The primary focus of this work is an analytical approach to
security against traffic analysis in wireless networks, and in par-
ticular, the design of provably secure countermeasures. Cryp-
tographic techniques can be used to prevent analysis of packet
contents (see Section I-B), however, significant information can
be inferred by analyzing the correlation across packet transmis-
sion schedules of multiple nodes. Furthermore, in wireless net-
works, due to the open medium, packet timing information is
easy to obtain. In this work, we consider the problem of de-
signing scheduling strategies for wireless nodes to prevenet the
inference of network routes from packet timing based inference
of network routes.

The challenge in designing transmission schedules that hide
networking information is to minimize the effects on network
performance. Wireless networks are subject to constraints on
medium access, latency, and stability, which generally result in
a high correlation across transmission schedules of nodes in a
route. The need for anonymity, however, necessitates that routes
are not detectable using the correlation across transmission
schedules. These contrasting paradigms result in a tradeoff
between anonymity and network performance. For example,
consider a simple two-hop setup shown in Fig. 1, where node
relays packets received from nodes and subject to a strict
delay constraint. Assuming the nodes transmit on orthogonal
channels, let the maximum transmission rates allowed by each
node be independently bounded. Then the set of rate pairs ,

of packets that can be relayed successfully from ,
respectively is given by a pentagon (see Fig. 1). Any rate-pair
in this region is achieved if the relay transmits each received
packet immediately upon reception (assuming processing de-
lays are negligible). It is easy to see that such a strategy would
result in a high correlation between the transmission schedules
of the sources and the relay. If, in addition to the networking
constraints, the relay is forced to transmit packets according
to a schedule that is statistically independent of the arrival
processes, correlation across schedules no longer provides any
information, thus hiding the relaying operation. However, the
strict delay constraint would result in packets being dropped
or require additional dummy packet transmissions by the relay,
thereby reducing the achievable relay rates.

The relaying operation of Fig. 1 represents the basic com-
ponent in wireless networking, and the characterization of
achievable rate regions with provable anonymity (of trans-
mission schedules) is one of the contributions of this work.
The example highlights that providing anonymity incurs a loss
in communication rates. A primary goal of this work is to
characterize this tradeoff between anonymity and performance
for general multihop networks. For this purpose, we define a
quantifiable metric of anonymity using the uncertainty in net-
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Fig. 1. Two-hop relay network.

working information (set of active routes in the network) from
the perspective of the eavesdropper. Although the example
suggests a simple technique to provide maximum anonymity by
making the schedules of all nodes statistically independent, the
reduction in relay rates at each node could significantly affect
the overall network throughput. Our goal is to design transmis-
sion strategies that sacrifice minimum network performance
while guaranteeing the desired level of anonymity.

A. Main Contributions

We consider a wireless network, where the nodes use orthog-
onal transmitter directed signaling, and every transmitted packet
is subjected to a strict delay constraint at every intermediate
relay. Under this model, we define a mathematical notion for
anonymity of network routes using Shannon’s equivocation [8],
assuming a global passive eavesdropper who observes transmis-
sion schedules of all nodes in the network. The problem we ad-
dress is the design of transmission schedules for relay nodes
to maximize throughput given a desired level of anonymity.
Specifically, we divide relays into two categories: covert and vis-
ible. A visible relay merely forwards packets immediately upon
reception, whereas a covert relay transmits packets according
to an independently generated transmission schedule. Our key
contributions in this regard are divided into two segments: de-
sign of covert relaying strategies and the selection of covert re-
lays depending on the network routes.

Fig. 2. Connection between rate distortion and anonymous networking.

For a covert relay, we design relaying strategies to minimize
the loss in achievable rates due to independence in transmission
schedules. Specifically, when the transmission schedules of
source nodes and the relay are independent Poisson processes,
we characterize the achievable rate region analytically. Al-
though independent Poisson schedules may not be optimal
under strict delay constraints, we show that, under certain
physical layer conditions, the achievable relay rates are optimal
under an average delay constraint.

For the general multihop network, we propose a randomized
strategy to choose the set of relays to be covert, given any de-
sired level of anonymity . Utilizing the results for a single
covert relay, we optimize the selection of covert relays in each
route, and characterize the resulting network throughput as a
function of . Our key result in this regard shows the equiva-
lence between the throughput–anonymity tradeoff and informa-
tion-theoretic rate distortion.

The connection between rate distortion and anonymous net-
working is not tied to our strategy of covert relaying, and can
be explained using a general intuition (see Fig. 2). The objec-
tive of the rate–distortion problem is to generate fewest number
of codewords for a set of source sequences, such that the corre-
sponding reconstruction sequences satisfy a specified distortion
constraint. The idea is to divide the set of source sequences into
fewest number of bins such that the distortion between each se-
quence in a bin and the reconstruction sequence is less than the
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specified constraint. Alternatively, if the goal is to minimize dis-
tortion for a fixed compression rate, then the total number of bins
are predetermined. The problem then translates to dividing the
sequences optimally into the bins such that the corresponding
reconstruction sequences minimize the expected distortion.

In the anonymous networking setup, let the set of active routes
at any given time be referred to as the network session. The key
idea is to divide the set of all possible network sessions into bins
such that, for each bin, there exists a scheduling strategy that
would make the sessions within that bin indistinguishable to an
eavesdropper. The level of anonymity required determines the
number of bins, and the optimal scheduling strategy plays the
role of the reconstruction sequence by minimizing the perfor-
mance loss for the sessions within the bin.
B. Related Work

Prevention of traffic analysis is a classical problem in com-
puter networks, and a dominant portion of prior research has
centered around Internet applications. In that regard, an impor-
tant countermeasure was provided by Chaum through the con-
cept of the traffic mix [9]. A mix is a node or server that collects
packets from multiple users and outputs them in a manner that
makes it infeasible to correlate an outgoing packet with a unique
incoming packet. Specifically, a mix performs re-encryption and
packet padding to obfuscate the contents of each packet. It also
changes the timing pattern of arrived packets by reordering and
batching packets from multiple users together. Subsequent im-
provements to mixing strategies include maintaining a dynamic
pool of packets [10], and random delaying [11].

Mixes have been widely used in designing remailer and proxy
systems [12], [13] for the Internet. However, when strict con-
straints on delay or buffer size are imposed on the traffic, it
was shown [14] that known mixing strategies no longer pro-
vided anonymity to long streams of traffic. An alternative ap-
proach, designed primarily for multihop wireless networks is
that of fixed scheduling [15]. In [15], the key idea was that every
node transmitted according to a fixed predetermined schedule
by transmitting dummy packets whenever data packets were un-
available. Although fixed scheduling prevents any retrieval of
information, the strategy results in a large percentage of dummy
packets and furthermore, the need for centralized synchronous
implementation makes it impractical in ad hoc wireless net-
works.

A key component of our approach is the analytical model
for anonymity of routes. In mix networks, anonymity has been
measured using the size or entropy of the anonymity set (set of
possible source–destination pairs) of an observed packet. In the
context of this work, the use of anonymity sets has two disad-
vantages. First, hiding source–destination pairs alone may not
be sufficient, the routes of data flow could also reveal critical
information. Second, we require a measure of anonymity that
considers continuous streams of packets rather than treat each
packet independently [14]. The information-theoretic metric
we propose is based on equivocation, which has primarily
been used to measure the secrecy of transmitted messages on
point-to-point channels [16], [17]. A common theme in [16],
[17] and in many subsequent results is the tradeoff between
communication rate and level of secrecy, which is also exhib-
ited in our results, albeit from an anonymity perspective.

Fig. 3. Two node switching network: G = (V ; E), V =
fS ; S ; B;D ;D g, E = f(S ;B); (S ;B); (B;D ); (B;D )g.

Prevention of traffic analysis can be viewed as the comple-
mentary problem to intrusion detection [18], which is another
important area in network security. Some of the techniques we
use to design covert relaying strategies are motivated by prior
work on stepping stone detection [19].

II. PROBLEM SETUP

A. System Model

Let be a directed graph, where is the set of
nodes in the network and is the set of directed links.
If is an element of , then node can receive transmis-
sions from node . A sequence of nodes is
a valid path in if , . Let the set of all
possible paths in be denoted by .

We assume that during any network observation by the eaves-
dropper, a subset of nodes communicate using a fixed set of
paths. This set of paths is referred to as a network
session. The information that we wish to hide from the eaves-
dropper is the network session . We model as an independent
and identically distributed (i.i.d.) random variable with a prob-
ability mass function (pmf) . Therefore, the
set of all possible sessions is given by

The prior information on sessions, which is obtained
using the topology and applications of the particular network, is
also available to the eavesdropper.

For the example network in Fig. 3, let , be the only
allowed sources and , the allowed destinations. For this
network, , the set of all possible paths, is given by

If we impose a restriction that the sources always communicate
with distinct destinations, then contains only two sessions

Transmission Schedules: The eavesdropper’s observation
consists of the packet transmission epochs1 in a session. We con-
sider a global passive eavesdropper who monitors transmissions
at all parts of the network. The packet headers are assumed to be
encrypted, and hence the contents of transmitted packets do not

1“Transmission epoch” in this work refers to the time instant of transmission
of a packet. Transmission delays are assumed negligible.
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reveal the identity of the transmitting or receiving nodes. How-
ever, the physical layer signaling strategy we consider provides
the eavesdropper information about the transmitting nodes to
the eavesdropper.

Transmitter Directed Signaling: All packets transmitted
by a particular node are modulated using the same spreading
sequence, and each transmitting node is associated with a
unique orthogonal spreading sequence. Under this transmission
scheme, an eavesdropper would be able to “tune” her detector
to a particular spreading sequence and identify the transmission
times of packets sent by the corresponding node. Although she
knows the transmitting node of each packet, since headers are
encrypted, she would not know the intended recipient of any
packet. Therefore, in a route involving multiple nodes, even
when all transmission schedules are correlated, it may not be
possible for an eavesdropper to determine the final destination
node.

Eavesdropper Observation: Let represent the schedule
of packets transmitted by node . The schedule is a sequence
of transmission epochs

where represents the transmission epoch of the th packet
transmitted by node . By virtue of unique orthogonal codes,
the eavesdropper can obtain the transmission schedule of each
individual node. The eavesdropper’s complete observation is
therefore given by . Note that, while repre-
sents the schedules of packet transmissions detected by eaves-
droppers, it does not specify which packets are relayed from
sources to destinations in a session. In fact, some of the epochs
in could represent dummy transmissions by nodes.

B. Anonymity Measure

We model as a set of random sequences of epochs with con-
ditional distribution , and use equivocation [8] to define
the measure of anonymity. The idea is to design such
that eavesdroppers obtain minimum information about the ses-
sion by observing .

Definition 1: A distribution is defined to have
anonymity if

When , the distribution is defined to have per-
fect anonymity. For a distribution with perfect anonymity

In other words, the observed schedules cannot provide the
eavesdropper any additional information about the routes than
the prior .

For a general , the physical interpretation of anonymity is
provided by Fano’s inequality [20]: If the error probability of
the eavesdropper in decoding the session is , then

In other words, the anonymity provides a lower bound to the
probability of error incurred by the eavesdropper in decoding

. This notion of anonymity that we consider is different from
previous definitions [11], [21], which primarily measured the
uncertainty of the source–destination pairs of each individual
packet. To the best of our knowledge, this is the first definition
of anonymity that deals with multihop routes and considers the
timing information in long streams of transmitted packets.

C. Network Constraints and Throughput

The key challenge in designing the schedule distribution
with provable anonymity is to sacrifice minimum per-

formance under the networking constraints. In this work, we
measure performance using the total rate of packets delivered
from sources to destinations per session subject to the following
constraints on medium access and latency.

Medium Access Constraints: The shared medium in
wireless network imposes constraints on the maximum rate of
packets that can be transmitted by the nodes. Since we consider
long streams of packet transmissions, we measure the rate of
packets transmitted using the following asymptotic measure:

(1)

where denotes the rate of packets transmitted by a node .
Since each transmitting node is associated with an orthogonal

spreading sequence, the constraint on transmission rate of each
node is independent. Specifically, we assume the transmission
rate of a node is upper-bounded by a constant , which
depends on the characteristics of the medium and the transmis-
sion capability of node .

We assume that the network operates in full duplex mode,
where every node can transmit and receive packets simulta-
neously as long as all transmission rates satisfy the specified
bounds. In other words, a set of schedules is a valid network
schedule if and only if for every node .

Latency Constraint: We consider a strict delay constraint
on the packets, where the packet delay at each intermediate
relay in a route is bounded by . In general, each relay is
allowed to re-encrypt packets, reorder arrived packets, and
transmit dummy packets. However, each received data packet
at a relay is required to be forwarded within time units of
arrival, or otherwise, dropped. Such a strict delay constraint
would apply in practice to time-sensitive applications such
as target tracking in sensor networks or streaming media in
peer-to-peer networks. In general, a strict delay constraint
would prevent congestion in the network and ensure stability,
albeit at the cost of dropped packets.

The transmission schedule only specifies when packets are
transmitted by each node, and do not indicate which packets
actually travel from source to destination on each route in a
session. For every schedule , we therefore specify a relaying
strategy, represented by , which is a set of subsequences of .
The subsequences represent the transmissions epochs of packets
that are relayed from sources to destinations and therefore, de-
pend on the routes of the session. we define the validity of a
relaying strategy under the delay constraints as follows.
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Fig. 4. 2 � 1 relay with strict delay constraint.

Definition 2: Let a session2 , where
is a valid path, and

represents the th node in path of session . A set of
sequences is a valid relaying
strategy given the schedule and session iff:

1. : .
2. .
3. If , then

.

In the preceding definition, condition 2 ensures that the re-
layed packets satisfy the delay constraint (see Fig. 4) at every
intermediate relay from the sources to the destinations of the
session. Condition 3 ensures that, if any pair of nodes is common
to multiple routes, the subsequences picked from the transmis-
sion schedules are mutually exclusive.

In Section IV-B, we also consider a relaxed version of the
delay constraint, where the average delay of packets is bounded
at each relay. The corresponding definition of a relaying strategy
with average delay constraint is obtained by replacing condi-
tion 2 in Definition 2 with the following conditions:

(2)

(3)

It is possible that the set of subsequences are a strict
subset of the transmissions schedule , or in other words,
there are epochs in that do not correspond to any relayed
packets. Those transmission epochs in that are not present
in would either correspond to packets that are dropped, or
represent dummy packet transmissions. Therefore, for a session

and relaying schedule , the rate of

2The notation j � j refers to number of paths in a session or number of nodes
in a path depending on the variable used.

packets relayed from source to destination on route is
given by

Note that, since condition 2 of Definition 2 ensures that all
schedules on a route have the same length, it is sufficient to use

to compute rate.

D. Performance Metric

For a large network with several possible session, characteri-
zation of the set of rates achievable on every path of a session is
potentially cumbersome. In order to draw useful inferences on
the relationship between anonymity and network performance,
we utilize a figure of merit that quantifies overall network per-
formance. Specifically, we consider network throughput as a
measure of performance, which is defined as follows.

Definition 3: is defined to be an achievable throughput with
anonymity if with anonymity such that

1. for every session , every realiza-
tion of given is a valid network schedule;

2. for every realization of , there exists a valid relaying
strategy , and

(4)

where the expectation is over the joint probability density
function (pdf) of and .

Note that the throughput as defined above merely represents
the rate of packets successfully relayed from sources to destina-
tions. Since the relaying strategy could result in packet drops
en route to the destinations, the reliable information rate de-
livered depends on the specific packet encoding and decoding
techniques. We address the issue of forward error correction for
reliability in Section IV-C.

III. COVERT RELAYING

Our approach to designing schedules and relay strategies de-
rives its motivation from mix networks [9] on the Internet, where
packets from each source travel through a sequence of special
proxy servers or routers called mixes before reaching the desti-
nation. A mix collects packets from multiple sources and trans-
mits them in batches, so an eavesdropper would not be able
to correlate incoming and outgoing packets at the mix. The
batching strategies of mixes, primarily designed for Internet ap-
plications such as e-mail and browsing, are, however, not suited
to handle tight delay constraints, and their anonymity is com-
promised when the sources transmit long streams [14].

To provide anonymity for long streams of packets in wireless
networks, we adopt the following approach. For every session,
we assign a subset of intermediate relays in the routes to gen-
erate packet transmission schedules that are statistically inde-
pendent of the packet arrival schedules to those relays. The re-
maining relays forward packets depending on the arrival times.
In effect, each relay node in a session operates in one of two
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Fig. 5. Visible and covert relaying.

transmission modes (see Fig. 5), covert and visible, which are
defined more precisely as follows.

A. Covert Relays

A relay is covert, if its outgoing transmission schedule
is statistically independent of the transmission schedules of all
nodes occurring previously in the paths that contain . The
independence in transmission schedules, owing to strict delay
constraints, would result in dropped packets or require dummy
packet transmissions. Therefore, the relaying strategy ( ) needs
to be optimally designed to minimize packet loss.

An external eavesdropper, who only observes transmission
schedules, cannot correlate successive streams (from the pre-
vious node to the relay and from the relay to the subsequent
node) in the path, and therefore, would not be able to detect the
relaying operation of a covert relay.

B. Visible Relays

A visible relay generates its schedule depending on the
arrival times of packets at . For every received packet, the
relay schedules a transmission epoch immediately following the
packet arrival (processing delay is assumed negligible compared
to ). It is evident that the schedules of streams transmitted
by a preceding node in the path and the relay would be highly
correlated, and the eavesdropper would detect the relay opera-
tion.3 Note that some of the arriving packets to the relay could
be dummy packets, which are also relayed by a visible relay.

By appropriately selecting which relays should be covert in
a session, we guarantee the required level of anonymity to the
routes. A trivial strategy would be to let all nodes act as covert
relays in a session. However, since the independent schedules
would result in packet loss at every covert relay, network
throughput would be reduced significantly. It is, therefore, nec-
essary to choose the covert relays optimally so that anonymity
is guaranteed with minimum loss in throughput.

As an example, consider the switching network shown in
Fig. 6. Let the maximum transmission rate allowed for each
node be . During any network session, each source trans-
mits packets to a distinct destination , and for each pair ,

there is a fixed path through the intermediate relays. The set
of possible sessions , therefore, contains 24 elements (all pos-
sible pairings) which are assumed equiprobable.

If all relays were visible, then the achievable throughput
would be (min-cut would be , ). Since the transmis-
sion schedules of all the relays ( ) are dependent
on the arrival schedules from the sources ( ), the
eavesdropper would be able to determine the paths of flow
until, but not including, the destination nodes (by virtue of

3By tuning the detector to the spreading sequences of successive nodes in a
path, the eavesdropper can detect the correlation in schedules to identify the path
of traffic flow through the relay.

Fig. 6. Switching network: Sources fS g transmit packets to destinations
fD g through relays fM g. The arrows represent the links in E .

transmitter directed signaling). In this case, it can be shown that
the level of anonymity is .

Alternatively, we could let all relays be covert. Such a strategy
would provide maximum anonymity , but would
reduce the achievable throughput due to packet drops. Let the
fraction of packets dropped at the relays due to
the independent schedules be given by , respectively.
The value of depends on the schedules and the designed
relaying strategy . Due to symmetry, we assume ,

. Since every path contains two covert relays and all
sessions are equally likely, the achievable network throughput
is .

Suppose, only , were to be covert, while ,
were visible. Then the eavesdropper would be able to observe
a portion of the paths, and make an intelligent guess on the ac-
tual session . Under such a scenario, it can be shown that the
anonymity level . However, since there is only
one covert relay in every path, the achievable throughput is in-
creased (from the maximum anonymity strategy) to .

From the example, it is clear that, depending on the level of
anonymity required, we need to choose covert relays optimally
so that network throughput is maximized. The optimal selec-
tion strategy to choose covert relays will be explained in Sec-
tion V-A. In the remainder of this section, we consider a single
covert relay, design relaying strategies for independent sched-
ules, and characterize the minimum packet loss incurred at the
covert relay ( ), as a function of the delay and medium access
constraints.

IV. ACHIEVABLE RATE REGIONS

One approach to generate independent schedules at a covert
relay would be to derive a queuing discipline that forwards
packets within the required delay constraints, and yet maintain
a statistically independent outgoing schedule. Such a strategy
would, however, be vulnerable to active inference methods such
as insertion of packets. We, therefore, propose an independent
scheduling technique, wherein each node in the network gener-
ates a random transmission schedule, statistically independent
of the session, and the schedules of other nodes in the network.

Independent scheduling is a particular solution to designing a
covert relay schedule. An alternative to independent scheduling
would be the fixed scheduling as described in [15]. Under
that model, each relay node follows a deterministic schedule
irrespective of transmitted data rates or paths of information
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Fig. 7. Multiaccess relay: Source S transmits packets toD through B.

flow. While the fixed scheduling strategy guarantees max-
imum anonymity, it would result in a large percentage of
dummy packets. Further, a fixed schedule requires a centralized
synchronous implementation, which is impractical in large
networks.

The relaying algorithms discussed in this section are not spe-
cific to the statistics of the particular transmission processes
and some of the optimal properties hold for any pair of point
processes. However, for the purpose of analytical characteriza-
tion of relay rates, we have assumed the source transmission
schedules to belong to independent Poisson point processes.
Poisson processes have typically been used to model the arrival
of packets to nodes in a network, due to memoryless interar-
rival times property. Although independent Poisson schedules
for the relay have not been proven optimal under strict delay
constraints, under certain conditions on the physical layer they
are shown to be optimal for an average delay constraint. Our re-
laying algorithms can be used on other point processes, such as
Pareto-distributed schedules, however, the analytical tractability
of achievable rates is not guaranteed.

A. Scheduling Under Strict Delay

Consider the special case of a single source relay (Fig. 7,
). We are interested in the achievable relay rate for the

route . The medium access constraints are speci-
fied by the bounds , on the transmis-
sion rates. If the delay constraint were absent ( ), then
each received packet could be relayed by at the next available
epoch in its transmission schedule. Since packets can be held
for an indefinitely long time, the achievable relay rate would be

. Note that this is also the
maximum possible rate if node were a visible relay.

When a strict delay constraint of is imposed, we design
the relaying strategy using the Bounded Greedy Match (BGM)
algorithm proposed in [22] under the context of chaff insertion
in stepping stone attacks. The algorithm (Fig. 8) is described in
Table I. The basic idea is as follows: When a packet arrives at ,
if there exists a departure epoch within of the arrival instant
and has not been matched to any previous arrival, it is assigned
to the arrived packet. Otherwise, the packet is dropped. If a relay
epoch does not have any packet assigned to it, the relay transmits
a dummy packet at that epoch.

It was shown in [22] that this greedy algorithm resulted
in least packet drops. Based on the algorithm, the following
theorem characterizes the best achievable relay rate, when the
source node and relay use independent Poisson schedules.

Theorem 1: If the nodes and generate independent
Poisson transmission schedules, the maximum achievable relay

Fig. 8. Bounded Greedy Match: Unmatched packets are dropped, unused
epochs have dummy packets.

TABLE I
BOUNDED GREEDY MATCH ALGORITHM

rate from to through is given by
where

(5)

Proof: Refer to the Appendix .

Theorem 1 expresses the maximum achievable rate in terms
of the fraction of packets dropped where rep-
resents the fraction of packets dropped at relay . As the delay
constraint increases, it is easy to see that the relay rate con-
verges to which is the maximum achievable rate
for a visible relay. Furthermore, the convergence of the relay rate
to the optimal value is exponential in . The value of
given in Theorem 1 is obtained when uses the maximum
transmission rate of for this particular route. In a general
network, could be simultaneously transmitting to another
node, in which case, the rate allocated for the route
would be strictly less than . In such a situation, by replacing

in (5) with the allocated rate for the particular route, we can
use Theorem 1 to evaluate the corresponding relay rate.

Relay: Consider the general relay as shown in
Fig. 7. Using a slight abuse of notation, we denote the vector
of achievable rates on the routes as

. In the absence of any delay constraint, the
achievable rate region would be identical to that of a visible
relay. Using standard min-cut arguments, it is easy to see that
any vector

(6)

is achievable by a visible relay.
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TABLE II
PRIORITY MAPPING ALGORITHM: S HIGHEST PRIORITY

For a finite delay constraint, a trivial achievable rate region
can be obtained if the relay ignores the originating source of the
arriving packets. Specifically, the relay uses the BGM algorithm
on the joint incoming schedule and the generated out-
going schedule . For this strategy, the single source result in
Theorem 1 can be easily extended to characterize an achievable
rate region for the covert relay, which is given in Corol-
lary 1.

Corollary 1: There exists a relaying strategy for an
covert relay such that the achievable rates

satisfy , where

(7)

(8)

Prioritized Scheduling: Ignoring the source identities and
considering a single joint stream is strictly suboptimal. Since
the relay observes a distinct stream from each source node (by
virtue of transmitter directed signaling), the streams can be pri-
oritized to obtain a larger achievable rate region compared to
Corollary 1.

Consider a relay and assign the highest priority to .
For every departure epoch in , the relay considers all packets
that have arrived within time units before that epoch. If some
of those packets arrived from (highest priority), the relay
transmits the earliest of those packets at the chosen epoch. If
none of the packets arrived from , then the packet that ar-
rived first (from ) is transmitted. Since is given highest
priority, this would provide the maximum rate achievable for the
stream from . The priority algorithm is described formally in
Table II.

By interchanging the priorities and applying the scheduling
algorithm, we can obtain the maximum rate for the stream from

. It is easy to see that, when none of the sources are given pri-
ority, it is equivalent to considering a single joint stream (Corol-
lary 1). By time-sharing relaying strategies with different pri-
ority requirements, a piecewise-linear region of achievable rate
vectors is obtained, which is characterized in Theorem 2.

Theorem 2:
1. is

achievable if it lies in a hexagonal region whose endpoints
are given by , , ,

, , ,
where

(9)

(10)

(11)

(12)

2. is not achievable if

(13)

Proof: Refer to the Appendix .

The priority scheduling cannot be proven to obtain the op-
timal achievable rate region, and so Theorem 2 also provides
an outer bound to determine the extent of suboptimality. The
outer bound is expressed as an upper bound on the sum rate

. This is obtained using the optimality of the BGM
algorithm and Corollary 1. It can be shown that as ,
the inner and outer bounds coincide and converge exponentially
fast. Although the optimality of the achievable rate region is still
an open problem, the strategy achieves the maximum possible
sum-rate.

The prioritized scheduling can be extended to more than two
sources. For an relay, every priority assignment corre-
sponds to an ordering of the sources. When packets from mul-
tiple sources contend for a single epoch, the packet chosen to be
transmitted belongs to the source with highest priority. Further,
by time-sharing strategies for different priority assignments, the
complete region can be obtained.

An example region for the relay is shown in Fig. 9. As
is evident, the time-sharing strategy results in a piecewise-linear
and convex region. The two corner points of the polygon in
the figure which represent the achievable rate-pairs when ,

are, respectively, given full priority, clearly demonstrate the
gains due to prioritized scheduling. Even when is given full
priority, the relay rate for is strictly positive. If no priority
is used, however, can achieve maximum rate only when
transmits at zero rate (region of Corollary 1). The maximum
priority rate-pairs can also be viewed as the outcome of succes-
sive application of the BGM algorithm on the incoming streams
from the two sources, with the order of application determined
using the priority assignment.

From Theorems 1 and 2, it is clear that when , , and
are finite, the relay rates are strictly less than the transmission
rates, thereby resulting in a nonzero packet drop rate. Therefore,
the source needs to employ forward error correction (FEC) in
order to deliver information to the destination reliably. It can
be shown that for very long streams, the coding does not result
in further reduction of achievable information rates (see Sec-
tion IV-C).
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Fig. 9. 2 � 1 relay rate region.R andR are the inner and outer bounds of
Theorem 2. The inner and outer bounds coincide at the maximal sum-rate point.
The outermost region is the achievable rate region of a visible relay.

B. Average Delay

Consider the average delay constraint at a relay, as specified
by (2) and (3). It is easy to see that a subset of achievable rates
under an average delay constraint of can be trivially obtained
by using the algorithms of Section IV-A that assume a strict
delay of . This rate region, however, can be significantly im-
proved by using a modified strategy as follows.

Consider the single source relay. Let repre-
sent the mean packet delay obtained when the BGM algorithm
is applied with strict delay constraints . Let be the strict
delay constraint such that the average meandelay of the BGM
algorithm satisfies . Then applying the
BGM algorithm with , an improved achievable rate can be
obtained.

Theorem 3: is an
achievable relay rate for an average delay constraint of if

o.w.

and is the solution to where

Proof: Refer to the Appendix

For values of close to zero, the strict delay constraint re-
quired is approximately . Therefore, for very small delays,
relaxation of the strict delay constraint does not provide signif-
icant improvement in achievable rate. However, as increases
beyond a certain threshold, the equivalent strict delay in-
creases exponentially. In that regime, an achievable rate close
to optimal can be obtained even for a finite . Furthermore,
as is evident from Theorem 3, when , the
strategy achieves zero packet loss. In other words, every trans-
mitted packet can be relayed successfully within the (average)
delay constraint.

Since we consider long streams, this strategy could poten-
tially be improved by dividing the stream into finite number
( ) of segments, and implementing the BGM algorithm
with different strict delay constraints in
different segments (see Fig. 10). The strict delay constraints

Fig. 10. Delay segmentation: In each segment of the traffic, a different strict
delay � is chosen.

should be chosen such that the average delay
is less than . As the length of the stream increases, each
segment would provide an achievable relay rate

(Theorem 1) and the net achievable
rate would be . However, for a pair of Poisson processes,

is a convex function of the strict delay , and hence,
this segmentation does not reduce4 packet loss for a fixed
average delay.

Using the relation between the strict delay and average delay
in Theorem 3, the achievable region for a general relay
can also be obtained by appropriately modifying the strict delay
constraint in the prioritized scheduling algorithm. The set of
transmission rates for which our strategy is optimal in the
relay case is a straightforward extension of Theorem 3.

Corollary 2: There exists a scheduling strategy that incurs
zero packet loss on all incoming streams under average delay
constraint , if the medium access constraints satisfy

From the results presented so far, it is clear that while in-
dependent Poisson scheduling generally provides a subset of
achievable relay rates for strict delay constraints, under certain
conditions on the medium access, it can be optimal for an av-
erage delay constraint. An important feature in the algorithms
presented is that the relays do not require prior knowledge about
transmission schedules of the source nodes. The decision to
transmit any packet is based on events occurring between its
arrival time and the subsequent departure epoch. This makes
it particularly attractive for a decentralized implementation of
the scheduling, which is of particular value in ad hoc wireless
and sensor networks. Note that although the rate expressions
derived are for Poisson processes, the algorithms presented are
quite general, and can be used on any set of transmission sched-
ules. Furthermore, the optimality of the BGM algorithm also
holds for any pair of schedules.

C. Reliability

The independent schedules and relaying algorithms discussed
thus far result in strictly nonzero packet drop rate for Poisson
processes. Further, since the relay nodes generate schedules in
a decentralized manner, it is not possible for the source node
to know the identities of packets that would be dropped. This
implies that the source nodes must employ FEC techniques to
transmit information reliably to the destination. When the traffic
is time sensitive such as in media transmission, FEC may not be
practical, as it would incur significant coding delay. However,

4This convexity may not hold for non-Poisson schedules, in which case, the
segmentation could potentially increase the achievable relay rate.
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if the strict delay constraint is enforced due to low duty cycles
(as in sensor networks) or to maintain stability. FCC ensures
reliability at the cost of coding delay.

In order to analyze the reliability of packet transmissions, it
is necessary to characterize the channel model between a source
and destination. For this purpose, we treat each packet as a bi-
nary unit of data, and equate a packet drop to an erasure. Since
packets can be indexed, the erasure positions would be known
at the destination node.

Consider a relay node forwarding packets from a single
source. Let denote the random variable indicating that
packet was successfully relayed when applying the BGM
relay algorithm. Then, using Proposition 4 in [23], it can be
shown that the rate specified in Theorem 1 also represents the
reliable information rate.

Lemma 1: The capacity of the binary erasure channel that
corresponds to a covert relay using the BGM algorithm is

where is given by (5).
Proof: Refer to the Appendix .

The achievability of this reliable rate, however, requires
coding across a long stream of packets. In practice, a packet
is not a unit of data and the FEC is different from regular
point-to-point communication channels. Specific coding
schemes for packet recovery in networks have been discussed
in literature [24], [25].

V. THROUGHPUT–ANONYMITY TRADEOFF

The achievability results presented in the previous section can
be viewed as the basic building blocks for hiding routes in a net-
work. A trivial extension to multihop networks would be to let
all relays generate independent transmission schedules. The rate
loss incurred at every node would however result in significant
loss in overall network throughput. In fact, Theorem 2 in [26]
shows that under certain conditions, for an –hop path with in-
dependent Poisson schedules, the maximum rate of packets that
can be relayed to the destination with strict delay constraint de-
cays exponentially as increases. This reinforces the idea of
selecting the set of covert relays optimally depending on the de-
sired level of anonymity .

A. Covert Relay Selection

The source transmission schedules are assumed to belong
to independent Poisson processes in each session. We model
the transmission schedules to covert relays to be independent
Poisson processes as well. Given a session , let represent
the set of relay nodes that are chosen to be covert. Given ,

, using the relaying algorithms discussed in the previous sec-
tion, the schedules and the relaying strategy can be gener-
ated for all relay nodes in the network. We model the set of
covert relays as a random variable with a conditional pmf

. The goal is to optimize the conditional
pmf so that network throughput is maximized for a
given level of anonymity .

B. Eavesdropper Observation

We assume that when a relay is visible, the eavesdropper per-
fectly correlates the schedules transmitted by a preceding node
and the relay. As a result, depending on the set of visible relays,
the eavesdropper can detect a portion of the routes in the ses-
sion perfectly. We denote this set of partial routes by .
Using the observation , the eavesdropper would try to infer the
actual session . The partial observation can be expressed as
a deterministic function of the actual session and the set of
covert relays .

We define function as follows. If
, then

such that (A1) or (A2) holds

A1. , such that
or .

A2. and .
For a set of paths , represents the eavesdropper’s

observation when node is covert. Condition 1 states that,
when a path in contains a covert relay, the eavesdropper would
observe two different paths, one terminating before and the
other originating from node . Condition 2 states that a path
that does not contain a covert relay is fully observed.

If , then is obtained by removing the desti-
nation nodes from every path in . This is because, even if all
relays are visible, transmitter directed signaling ensures that it
is not possible to detect the final destination in any route.

When a subset of relays are covert,
then can be obtained by repeated application of

(14)

For the purpose of optimizing the choice of relays, it is suffi-
cient to consider the derived eavesdropper observation , as is
evident from the following lemma.

Lemma 2: If , then
1. is a sufficient statistic for detecting using .
2. Given , is an invertible function of .

Proof: Refer to the Appendix .

The preceding lemma shows that, for an eavesdropper, the in-
formation contained in about is completely encapsulated in
the observed session . Further, the pairs of variables
and are isomorphic, or in other words, there is a one to
one correspondence between the two pairs of variables. There-
fore, choosing the set of covert relays is equivalent to de-
signing the eavesdropper observation .

C. Throughput Function

The relaying strategies in Section IV-A were designed to min-
imize the packet loss at a single covert relay. Extending those
results to multihop routes, we characterize the loss in sum-rate
of each session , when a subset of relays are covert.

The maximum throughput in the network is achieved
when all relays are visible. In a session , the maximum
achievable sum-rate can be characterized using the max-flow
under the transmission rate constraints. Specifically, let

represent the vector of
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achievable relay rates for the paths in session with no covert
relays, and be the maximum achievable sum-rate.

Let . The maximum sum-rate is
achieved when all relays are visible, which is given by the
solution to

(15)

(16)

Therefore , the maximum throughput when anonymity
is given by

where the expectation is over the prior .
When a subset of relays are covert, the achievable sum-rate

in each session is reduced depending on the fraction of
packets dropped at each covert relay. Specifically, let

represent the achiev-
able relay rates from sources to destinations for a session

, when nodes in are covert, and let

be the achievable sum-rate. If represents the th node in
path , then

(17)
where represents the fraction of packets transmitted
by node on path , that are dropped by covert relay .
Note that Theorems 1 and 2 provide closed-form expressions for

only if is the first covert relay in the path . Since
the departure epochs of data packets from a covert relay do not
constitute a Poisson process, the expression cannot be applied
to subsequent covert relays. The analytical characterization of
multiple covert relays in a path is generally cumbersome, but
can be obtained numerically.

Although the solution of the optimization in (15),(16) speci-
fies a set of transmission rates for the nodes, we know from The-
orems 1 and 2 that, increasing the transmission rates of nodes
can reduce the packet loss. Therefore, if the relay immediately
following a source node is covert, the source node could transmit
at the maximum rate possible to minimize packet losses. Since
only the source is allowed to perform forward error correction,
it does not help to increase transmission rates of subsequent re-
lays (as we would only get additional dummy packets).

VI. PERFORMANCE CHARACTERIZATION

With the eavesdropper observation of (14) and throughput
characterization in (17), we now have all the elements required
to maximize throughput with anonymity . Prior to optimizing
the general randomized strategy, to ease understanding, we first
discuss a simple deterministic strategy to obtain a smaller region
of achievable throughput anonymity pairs. Then, expanding on
that idea, we will present the optimal strategy to choose covert
relays.

A. Deterministic Covert Scheduling

A direct optimization using (17) provides a determin-
istic strategy to characterize achievable sum-rates under the
anonymity requirements. Specifically, a subset of relays is
chosen to remain covert for all sessions, such that the sum-rates
are maximized without violating the anonymity requirement.
Using Lemma 2, the following result presents an achievable
throughput-anonymity region.

Corollary 3: A throughput is achievable with anonymity
if

where .

Depending on the level of anonymity required, the strategy
picks the best subset of nodes to remain covert (for all ses-
sions). Since the number of possible subsets of relays is finite,
the achievable sum-rate anonymity region would be constant
within intervals of , with sudden jumps corresponding to a
change in the optimal subset (see example in Section VII).

B. Probabilistic Covert Scheduling

The drawback in the deterministic strategy is that the subset
is chosen independent of the session . We consider a gen-

eral class of strategies, where the set of covert relays are chosen
according to a random distribution that depends on

. The goal is then to optimize so that achievable
throughput is maximized for the desired level of anonymity .
The optimal distribution and the corresponding analytical char-
acterization of the optimal throughput is given in the following
theorem using an information-theoretic rate–distortion function.

Theorem 4: Let so that

s.t.
o.w.

(18)
Then, a throughput is achievable with anonymity if

where is the distortion–rate function defined as

(19)

Proof: Refer to the Appendix .

According to the preceding theorem, can be expressed
using the single-letter characterization of a rate–distortion func-
tion. The function represents the reduction in sum-rate
in session when the observed session is . Although the loss
function parameters do not explicitly include the set of covert re-
lays , we know from Lemma 2 that given , the set of covert
relays is unique. Therefore, the distribution to chose
covert relays is equivalent to the distortion minimizing distri-
bution in (19). Note that due to the equivalence to a rate–dis-
tortion function, the Blahut–Arimoto algorithm [27] provides
an efficient iterative technique to obtain and to charac-
terize the achievable throughput . Note that the anonymity
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is guaranteed assuming that the eavesdropper is aware of the
network topology, the session prior distribution , and the
optimal strategy of choosing covert relays.

The equivalence between anonymous networking and rate
distortion is not tied to our strategy of choosing covert relays, as
explained in Section I-A. In our model, the level of anonymity
directly corresponds to the rate of compression and the reduc-
tion in throughput models the distortion. Therefore, obtaining
the optimal rate–distortion function is equivalent to obtaining
the throughput anonymity relation.

We believe that the consequences of this duality extend be-
yond the characterization of the tradeoff between anonymity and
throughput. Rate distortion is a field that has been studied for
many decades [20], and the numerous models and techniques
developed therein could possibly be utilized in anonymous net-
working. One example is the use of Blahut–Arimoto algorithm
as an efficient iterative technique to obtain the optimal distribu-
tion of covert relays in a session.

Presently, we have considered independent sessions of obser-
vation, which may not apply to the scenario where an eaves-
dropper monitors the network for long periods of time. In that
case, we would need a stochastic model to account for session
changes, depending on when nodes start or stop communica-
tion. One approach would be to adapt a Markovian model for
the temporal correlation of sessions, in which case, we believe
that ideas in causal source coding [28] would provide useful in-
sights.

We currently model the entire session as a single entity (the
variable ) which may not be practical to analyze in a large-
scale network. This model could be broken down to hiding each
route independently, depending on the level of anonymity re-
quired by that particular route.

VII. EXAMPLE

Consider the switching example given in the beginning of
Section V (Fig. 6). During any network session, each source
picks a distinct destination . The set of sessions , contains
24 elements which are assumed equiprobable. For this example,
Fig. 11 plots the sum–rate anonymity region for the determin-
istic and probabilistic strategies discussed previously.

The sum-rate anonymity relationship is convex as seen in
the figure. This is because the performance metrics, namely,
anonymity and throughput, are average quantities, which per-
mits the use of time sharing to convexify any set of achiev-
able rates. The figure clearly demonstrates the performance im-
provement due to the randomized covert scheduling. As can be
seen, when all relays are visible, the maximum sum-rate is
achieved with a strictly positive secrecy level. This is because,
given the transmission stream from relay (or ), it is not
possible for the eavesdropper to detect which packets are re-
ceived by each destination node. Another interesting observa-
tion is that it suffices to make relays , covert in order to
obtain perfect anonymity. This shows that, although making all
relays covert ensures perfect secrecy, it may not be necessary.

VIII. CONCLUSION

One of our key contributions in this work is the theoretical
model for anonymity against traffic analysis. To the best of

Fig. 11. Throughput anonymity region for 4 � 4 switching network withC =

2. The curve labeled “time-sharing” is achieved by time-sharing multiple deter-
ministic strategies, and results in a convex relationship.

our knowledge, this is the first analytical metric designed to
measure the secrecy of routes in an eavesdropped wireless
network. Based on the metric, we designed scheduling and
relaying strategies to maximize network performance with a
guaranteed level of anonymity. Although we consider specific
constraints on delay and bandwidth, the ideas of covert relaying
and the randomized selection are quite general, and apply to ar-
bitrary multihop wireless networks. The throughput–anonymity
tradeoff we obtain reiterates the known paradigm of inverse
relationship between communication rate and secrecy in covert
channels.

In this work, we used throughput as an indicator of network
performance and optimized the selection strategy. However,
the framework we establish extends beyond maximizing
throughput. In fact, the loss function we define in (18) can be
redefined to represent the loss in any convex function of the
achievable relay rates. Further, instead of fixing the packet
delay and minimizing the loss in sum-rate, we could fix the
rates of transmission and analyze the increase in latency at
every covert relay. By optimally designing the loss function
to reflect the increase in overall network latency, we would
be able to derive the relationship between latency and level of
anonymity. Recently, we provided an approach for decentral-
ized covert relaying in [29], and also presented an achievable
latency-anonymity region in [30].

APPENDIX

Proof of Theorem 1:

To prove the theorem, we adopt the technique used in [19].
Consider the two point processes . Let be the th
packet delay, i.e., . Define
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We see that ’s are i.i.d. random variables; each is the
difference between two independent exponential random vari-
ables with mean and , respectively. The process

is a general random walk with step . Define .
Now for every dummy packet transmitted at in , we insert

a virtual packet at in ; for every packet dropped at time
in , we insert a virtual packet at in . Let the new
packet delays after the insertion of virtual packets be .
It can be shown that is also a random walk with step

, but it has two absorbing barriers at and , i.e.,

Since it is almost surely impossible for to be ex-
actly equal to or , each time corresponds to a dummy
transmission in , and corresponds to a dropped
packet in . From Example 2.16 in [31], we know that the
probability of is given by

Therefore, the fraction of dropped packets in is

By replacing the transmission rates , with the max-
imum values , , the theorem is proved. In [22], the
authors have shown that the BGM algorithm inserts the least
chaff fraction for any pair of point processes. Hence, for any

, it is impossible to obtain a higher relay rate than
(5). This procedure can be extended to multihop by considering
multidimensional random walk, but closed-form evaluation of
the relay rates is cumbersome, even for a few hops.

Proof of Theorem 2:

1. Let the zero priority region of Corollary 1 be represented
by . Every point on the boundary of is obtained by let-
ting one node transmit at the highest rate and varying the trans-
mission rate of the other source node from to the maximum
value . The maximum sum-rate point in is a special case
of priority mapping; when each node transmits at full rate and
the relay uses BGM on the joint arrival process, it is equivalent
to priority mapping with both nodes given equal priority. This
corresponds to the vertex . When node 1
is given full priority, the achievable rate pair corresponds to the
vertex . We will present the derivation for
this pair of achievable rates. The achievability of the rate-pair
when node 2 is given maximum priority can be similarly ob-
tained. By time-sharing across strategies, the complete hexagon
of rate-pairs can be shown achievable.

When node is given max priority, the rate is ob-
tained using a direct application of Theorem 1. is ob-
tained using the following derivation for the achievable fraction
of packets relayed from source using the unmarked epochs.
Let the stream of dummy packets obtained after application of
the BGM algorithm on the stream from source correspond
to times . We refer to this as the residual stream.

An epoch in the residual stream would correspond to a re-
layed packet from source if there exists a packet from in

such that it arrived at most time units prior to .
This does not capture all packets from as the BGM, but pro-
vides a lower bound on the fraction of packets relayed. Let
denote the arrival time of the first packet from after , and
let , . Then the rate of relayed
packets from is given by

where is an exponential random variable such that
for all . It is easy to see that

an exponential variable of rate would satisfy the require-
ment, as it amounts to no packet from being relayed. We
obtain the distribution of variable as follows. We model

as the interarrival time of a thinned version of the Poisson
process with rate where the thinning factor is obtained
using the modified matching strategy just described for source
2. It is easy to see that the interarrival time in the residual
stream obtained using BGM would have to be at least as large
as that obtained using this strategy. The rate of this exponential

random variable can be shown to be
(details are omitted due to space constraints). Therefore

Subsituting the value for and computing the corresponding
values when has higher priority, we get the expressions in
the theorem.

2. The outer bound is obtained using the optimality of BGM
algorithm. Let node transmit at rates . Then, the sum
information relay rate obtained by using the BGM algorithm on
the joint incoming process is given by

(20)

Since BGM inserts the least fraction of dummy packets[22],
this is the maximum sum-rate achievable for the given transmis-
sion rates. For each individual source , the best rate possible is
obtained if the other source is completely ignored. Therefore, by
replacing by in (20), we can obtain the remaining
conditions that specify the outer bound.

Proof of Theorem 3:

Consider the modified point processes as defined in the proof
of Theorem 1. denotes the th step size of the random walk
between two absorbing barriers. The average delay incurred by
the BGM algorithm is equal to the expected mean size of the
random walk without including the steps that hit either bound-
aries. Following the exposition in Example 2.16 in [31, p. 67],
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the cumulative distribution of the step size (or delay ) in the
interval is given by

(21)

Using the expression above, the average delay for the BGM
algorithm with strict delay can be evaluated as

If , then as ,

This implies that if , then the BGM algorithm
with would be sufficient, and more importantly, op-
timal. It is easy to see that for small values of , the average
delay . In other words, when the allowed delay is very
small, relaxing the constraint does not provide significant im-
provement.

Proof of Lemma 1:

Consider the modified point processes as defined in the proof
of Theorem 1. denotes the th step size of the random walk
between two absorbing barriers. Consider a subsequence
of , wherein contains all points in that are strictly
greater than . In other words, does not represent any dummy
packets. Accordingly, the erasure variable be-
cause a packet is relayed whenever the random walk does not hit
either barriers. Since the point processes are renewal processes,
the resulting random walk is stationary and the distribution for

given by (21). Therefore, the erasure is a stationary and
ergodic Markov chain and the capacity of the erasure channel is
given by

Proof of Lemma 2:

From (17), we know that is an achievable relay rate
vector when nodes in are covert. It remains to be seen that
the condition guarantees an anonymity . For this
purpose, it is sufficient to show that

Let be the schedules generated assuming was a session
and none of the nodes were covert. The transmission rates of
nodes in are assumed identical to . For the nodes that are
the sources in , the schedules are independent in and . Ses-
sion has additional sources due to the broken paths, which
also generate independent transmission schedules. The set of
these additional sources is identical to the set of covert relays in

. Therefore, the schedules are independent in as well. Since
the remaining nodes relay all received packets within negligible
processing delay, . Then, using the data pro-
cessing inequality ( )

Consider any realization of the variables , . Sup-
pose such that .
Then, we can write
where , , and

. We know that

Suppose none of the paths in contain , then
it does not matter if those relays are covert or not, in which case
the subset of covert relays would be .

If that contains , then would
contain a path that ends in , whereas cannot con-
tain such a path. Therefore, we have a contradiction.

Proof of Theorem 4:

Consider the optimal solution of the distortion rate
problem

From the definition of , it is easy to see that if
s.t. , then . Given , Lemma

2 shows that the set of covert relays are uniquely determined.
Therefore, we can equivalently write .
Therefore, specifies a valid selection strategy. Since

is fixed a priori, ensures that an
anonymity is guaranteed. Further, for every , the function

evaluates the difference in achievable rate vectors
and . Taking expectation over , it is easy to
see that the distortion is achievable with –anonymity.

REFERENCES

[1] N. West, The SIGINT Secrets: The Signal Intelligence War: 1900 to
Today. New York: William Morrow, 1988.

[2] V. L. Voydock and S. T. Kent, “Security mechanisms in high-level net-
work protocols,” ACM Comp. Surv., vol. 15, pp. 135–171, 1983.

[3] J.-F. Raymond, “Traffic analysis: Protocols, attacks, design issues and
open problems,” in Designing Privacy Enhancing Technologies: Pro-
ceedings of International Workshop on Design Issues in Anonymity and
Unobservability (Lecture Notes in Computer Science), H. Federrath,
Ed. Berlin, Germany: Springer-Verlag, 2001, vol. 2009, pp. 10–29.

Authorized licensed use limited to: Cornell University. Downloaded on October 7, 2008 at 15:25 from IEEE Xplore.  Restrictions apply.



2784 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 6, JUNE 2008

[4] Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. N. Padmanabhan, and
L. Qiu, “Statistical identification of encrypted web browsing traffic,”
in Proc. 2002 IEEE Symp. Security and Privacy, Berkeley, CA, May
2002, p. 19.

[5] N. Matthewson and R. Dingledine, “Practical traffic analysis: Ex-
tending and resisting statistical disclosure,” presented at the Privacy
Enhancing Technologies: 4th International Workshop, Toronto, ON,
Canada, May 2004.

[6] E. W. Felten and M. A. Schneider, “Timing attacks on web privacy,”
in Proc. ACM Conf. Computer and Communications Security, Athens,
Greece, Nov. 2000, pp. 25–32.

[7] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on SSH,” in Proc. 10th USENIX Security Sym.,
Washington, DC, Aug. 2001, pp. 25–40.

[8] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.
Tech. J., vol. 28, pp. 656–715, 1949.

[9] D. Chaum, “Untraceable electronic mail, return addresses and digital
pseudonyms,” Commun. ACM, vol. 24, pp. 84–88, Feb. 1981.

[10] C. Díaz and A. Serjantov, “Generalizing mixes,” in Proc. Privacy En-
hancing Technologies Workshop (PET 2003) (Lecture Notes in Com-
puter Science). Berlin, Germany: Springer-Verlag, Apr. 2003, vol.
2760.

[11] D. Kesdogan, J. Egner, and R. Buschkes, “Stop-and-go MIXes pro-
viding probabilistic security in an open system,” in Proc. 2nd Int. Work-
shop on Information Hiding (IH’98), Portland, OR, Apr. 1998, vol.
1525, Lecture Notes in Computer Science, pp. 83–98.

[12] C. Gulcu and G. Tsudik, “Mixing e-mail with Babel,” in Proc. Symp.
Network and Distributed System Security, San Diego, CA, Feb. 1996,
pp. 2–19.

[13] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of
a type III anonymous remailer protocol,” in Proc. 2003 Symp. Security
and Privacy, Oakland, CA, May 2003, pp. 2–15.

[14] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On flow corre-
lation attacks and countermeasures in mix networks,” in Proc. Privacy
Enhancing Technologies Workshop, Toronto, ON, Canada, May 2004,
pp. 207–225.

[15] B. Radosavljevic and B. Hajek, “Hiding traffic flow in communication
networks,” in Proc. Military Communications Conf., San Diego, CA,
1992, pp. 1096–1100.

[16] A. Wyner, “The wiretap channel,” Bell Syst. Tech. J., vol. 54, pp.
1355–1387, 1975.

[17] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. IT-24, no. 3, pp. 339–348, May
1978.

[18] S. Axelsson, “lIntrusion Detection Systems: A Taxonomy and Survey,”
Chalmers Univ. Technol., Sweden, Tech. Rep., 2000.

[19] T. He and L. Tong, “Detection of information flows,” IEEE Trans. Inf.
Theory, submitted for publication.

[20] T. Cover and J. Thomas, Elements of Information Theory. New York:
Wiley, 1991.

[21] A. Serjantov and G. Danezis, “Towards an information theoretic metric
for anonymity,” in Proc. Privacy Enhancing Technologies Workshop
(PET 2002) (Lecture Notes in Computer Science), R. Dingledine and
P. Syverson, Eds. Berlin, Germany: Springer-Verlag, Apr. 2002, vol.
2482.

[22] A. Blum, D. Song, and S. Venkataraman, “Detection of interactive step-
ping stones: Algorithms and confidence bounds,” in Conference on Re-
cent Advance in Intrusion Detection (RAID), Sophia-Antipolis, France,
Sep. 2004, pp. 258–277.

[23] S. Boucheron and M. R. Salamatian, “About priority encoding trans-
mission,” IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 699–705, Mar.
2000.

[24] N. Shacham and P. McKenney, “Pakcet recovery in high-speed
networks using coding and buffer management,” in Proc. IEEE IN-
FOCOM, San Francisco, CA, 1990, pp. 124–131.

[25] L. Rizzo, “Effective erasure codes for reliable computer communi-
cation protocols,” Proc. ACM SIGCOMM Computer Communication
Rev., vol. 27, pp. 24–36, Jun. 1997.

[26] T. He, P. Venkitasubramaniam, and L. Tong, “Packet scheduling
against stepping-stone attacks with chaff,” in Proc. IEEE Military
Communications Conf., Washington, DC, Oct. 2006.

[27] R. Blahut, “Computation of channel capacity and rate-distortion func-
tions,” IEEE Trans. Inf. Theory, vol. IT-18, no. 4, pp. 460–473, Jul.
1972.

[28] D. Neuhoff and L. Gilbert, “Causal source codes,” IEEE Trans. Inf.
Theory, vol. IT-28, no. 5, pp. 701–713, Sep. 1982.

[29] P. Venkitasubramaniam and L. Tong, “Throughput-anonymity tradeoff
in wireless networks under latency constraints,” in Proc. 2008 IEEE
INFOCOM, Phoenix, AZ, Apr. 2008, pp. 807–815.

[30] P. Venkitasubramaniam and L. Tong, “Anonymity with minimum la-
tency in multihop networks,” in Proc. 2008 IEEE Symp. Security and
Privacy, Oakland, CA, May 2008.

[31] D. Cox and H. Miller, The Theory of Stochastic Processes. New York:
Wiley, 1965.

Authorized licensed use limited to: Cornell University. Downloaded on October 7, 2008 at 15:25 from IEEE Xplore.  Restrictions apply.


